Skip to main content
Log in

Ground state solutions for a class of fractional Kirchhoff equations with critical growth

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the effect of lower order perturbations in the existence of positive solutions to the fractional Kirchhoff equation with critical growth \(\left(a+b\int_{\mathbb{R}^{3}}|(-\triangle)^\frac{s}{2}u|^{2}dx\right)(-\triangle)^{s}u+V(x)u=\mu|\mu^{p-1}u+|u|^{2_s^*}-^{2}u, x\epsilon{\mathbb{R^3}},\) where a; b > 0 are constants, μ > 0 is a parameter, \(s\in(\frac{3}{4},1),\;1<p<2_s^*-1=\frac{3+2s}{3-2s}\), and V : ℝ3 → ℝ is a continuous potential function. For suitable assumptions on V, we show the existence of a positive ground state solution, by using the methods of the Pohozaev-Nehari manifold, Jeanjean’s monotonicity trick and the concentration-compactness principle due to Lions (1984).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C O, Correa F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput Math Appl, 2005, 49: 85–93

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio V, Isernia T. A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity. Commun Contemp Math, 2018, 20: 1750054

    Article  MathSciNet  MATH  Google Scholar 

  3. Arosio A, Panizzi S. On the well-posedness of the Kirchhoff string. Trans Amer Math Soc, 1996, 348: 305–330

    Article  MathSciNet  MATH  Google Scholar 

  4. Autuori G, Fiscella A, Pucci P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal, 2015, 125: 699–714

    Article  MathSciNet  MATH  Google Scholar 

  5. Baraket S, Bisci G M. Multiplicity results for elliptic Kirchhoff-type problems. Adv Nonlinear Anal, 2017, 6: 85–93

    MathSciNet  MATH  Google Scholar 

  6. Barris B, Colorado E, de Dablo A, et al. On some critical problems for the fractional Laplacian. J Differential Equations, 2012, 252: 6133–6162

    Article  MathSciNet  MATH  Google Scholar 

  7. Bisci G M. Sequence of weak solutions for fractional equations. Math Res Lett, 2014, 21: 241–253

    MathSciNet  Google Scholar 

  8. Bisci G M, Rădulescu V, Servadei R. Variational Methods for Nonlocal Fractional Problems: With a Foreword by Jean Mawhin. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge: Cambridge University Press, 2016

    Book  Google Scholar 

  9. Bisci G M, Repovš D. On doubly nonlocal fractional elliptic equations. Rend Lincei Mat Appl, 2015, 26: 161–176

    Article  MathSciNet  MATH  Google Scholar 

  10. Bisci G M, Tulone F. An existence result for fractional Kirchhoff-type equations. J Anal Appl, 2016, 35: 181–197

    MathSciNet  MATH  Google Scholar 

  11. Bisci G M, Vilasi L. On a fractional degenerate Kirchhoff-type problem. Commun Contemp Math, 2017, 19: 1550088

    Article  MathSciNet  MATH  Google Scholar 

  12. Brändle C, Colorado E, de Pablo A, et al. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 142: 39–71

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang X, Wang Z-Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26: 479–494

    Article  MathSciNet  MATH  Google Scholar 

  16. Chipot M, Lovat B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal, 1997, 30: 4619–4627

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108: 247–262

    Article  MathSciNet  MATH  Google Scholar 

  18. Davila J, del Pino M, Wei J. Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differential Equations, 2014, 256: 858–892

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

    Article  MathSciNet  MATH  Google Scholar 

  20. Dipierro S, Medina M, Valdinoci E. Fractional elliptic problems with critical growth in the whole of RN. ArXiv:1506.01748vl, 2015

    MATH  Google Scholar 

  21. Dipierro S, Palatucci G, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania), 2013, 68: 201–216

    MathSciNet  MATH  Google Scholar 

  22. doó J M, Miyagaki O H, Squassina M. Critical and subcritical fractional problems with vanishing potentials. Commun Contemp Math, 2016, 18: 1550063

    Article  MathSciNet  MATH  Google Scholar 

  23. Druet O, Hebey E, Robert F. Blow-Up Theory for Elliptic PDEs in Riemannian Geometry. Mathematical Notes, vol. 45. Princeton: Princeton University Press, 2004

    MATH  Google Scholar 

  24. Fabes B E, Kenig C E, Serapioni R P. The local regularity of solutions of degenerate elliptic equations. Comm Partial Differential Equations, 1982, 7: 77–116

    Article  MathSciNet  MATH  Google Scholar 

  25. Felmer P, Quaas A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237–1262

    Article  MathSciNet  MATH  Google Scholar 

  26. Fiscella A, Pucci P. p-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal Real World Appl, 2017, 35: 350–378

    Article  MathSciNet  MATH  Google Scholar 

  27. Fiscella A, Servadei R, Valdinoci E. Density properties for fractional Sobolev spaces. Ann Acad Sci Fenn Math, 2015, 40: 235–253

    Article  MathSciNet  MATH  Google Scholar 

  28. Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94: 156–170

    Article  MathSciNet  MATH  Google Scholar 

  29. Ge B, Zhang C. Existence of a positive solution to Kirchhoff problems involving the fractional Laplacian. J Anal Appl, 2015, 34: 419–434

    MathSciNet  MATH  Google Scholar 

  30. He X, Zou W. Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc Var Partial Differential Equations, 2016, 55: 91

    Article  MATH  Google Scholar 

  31. He Y, Li G. Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54: 3067–3106

    Article  MathSciNet  MATH  Google Scholar 

  32. Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129: 787–809

    Article  MathSciNet  MATH  Google Scholar 

  33. Jeanjean L, Tanaka K. A positive solution for a nonlinear Schrödinger equation on RN. Indiana Univ Math J, 2005, 54: 443–464

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirchhoff G. Mechanik. Leipzig: Teubner, 1883

    MATH  Google Scholar 

  35. Laskin N. Fractional quantum mechanics and Levy path integrals. Phys Lett A, 2000, 268: 298–305

    Article  MathSciNet  MATH  Google Scholar 

  36. Laskin N. Fractional Schrödinger equation. Phys Rev E (3), 2002, 66: 056108–056114

    Article  MathSciNet  Google Scholar 

  37. Li G, Ye H. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J Differential Equations, 2014, 257: 566–600

    Article  MathSciNet  MATH  Google Scholar 

  38. Lions P L. The concentration-compactness principle in the calculus of variation: The locally compact case. Part I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions P L. The concentration-compactness principle in the calculus of variation: The locally compact case. Part II. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu Z, Squassina M, Zhang J. Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. NoDEA Nonlinear Differential Equations Appl, 2017, 24: 50

    Article  MathSciNet  MATH  Google Scholar 

  41. Nyamoradi N, Teng K. Existence of solutions for a Kirchhoff-type nonlocal operators of elliptic type. Commun Pure Appl Anal, 2015, 14: 361–371

    Article  MathSciNet  MATH  Google Scholar 

  42. Pohozaev S I. A certain class of quasilinear hyperbolic equations. Mat Sb, 1975, 96: 152–166

    MathSciNet  Google Scholar 

  43. Pucci P, Saldi S. Critical stationary Kirchhoff equations in RN involving nonlocal operators. Rev Mat Iberoam, 2016, 32: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  44. Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff equations involving the fractional p-Laplacian in RN: Calc Var Partial Differential Equations, 2015, 54: 2785–2806

    Google Scholar 

  45. Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43: 270–291

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655–674

    Article  MathSciNet  MATH  Google Scholar 

  47. Secchi S. Ground state solutions for nonlinear fractional Schrödinger equations in RN. J Math Phys, 2013, 54: 031501

    Article  MathSciNet  MATH  Google Scholar 

  48. Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67–102

    Article  MathSciNet  MATH  Google Scholar 

  49. Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60: 67–112

    Article  MathSciNet  MATH  Google Scholar 

  50. Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187: 511–517

    Article  MathSciNet  MATH  Google Scholar 

  51. Teng K. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J Differential Equations, 2016, 261: 3061–3106

    Article  MathSciNet  MATH  Google Scholar 

  52. Willem M. Minimax Theorems. Boston: Birkhäuser, 1996

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11771468 and 11271386). The second author was supported by National Natural Science Foundation of China (Grant Nos. 11771234 and 11371212). The authors thank the referees for their careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zou, W. Ground state solutions for a class of fractional Kirchhoff equations with critical growth. Sci. China Math. 62, 853–890 (2019). https://doi.org/10.1007/s11425-017-9399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9399-6

Keywords

MSC(2010)

Navigation