Skip to main content
Log in

Classification of certain qualitative properties of solutions for the quasilinear parabolic equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we mainly consider the initial boundary problem for a quasilinear parabolic equation

$${u_t} - div\left( {{{\left| {\nabla u} \right|}^{p - 2}}\nabla u} \right) = - {\left| u \right|^{\beta - 1}}u + \alpha {\left| u \right|^{q - 2}}u,$$

where p > 1; β > 0, q ≥ 1 and α > 0. By using Gagliardo-Nirenberg type inequality, the energy method and comparison principle, the phenomena of blowup and extinction are classified completely in the different ranges of reaction exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev S, Díaz J I, Shmarev S. Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics. Progress in Nonlinear Differential Equations and Their Applications, vol. 48. Boston: Birkäuser, 2002

    MATH  Google Scholar 

  2. Antontsev S, Shmarev S. Anisotropic parabolic equations with variable nonlinearity. Publ Mat, 2009, 53: 355–399

    Article  MATH  MathSciNet  Google Scholar 

  3. Antontsev S, Shmarev S. Energy solutions of evolution equations with nonstandard growth conditions. Monogr Real Acad Ci Exact Fís-Quím Nat Zaragoza, 2012, 38: 85–111

    MATH  MathSciNet  Google Scholar 

  4. Attouchi A. Well-posedness and gradient blow-up estimate near the boundary for a Hamilton-Jacobi equation with degenerate diffusion. J Differential Equations, 2012, 253: 2474–2492

    Article  MATH  MathSciNet  Google Scholar 

  5. Díaz J I. Qualitative study of nonlinear parabolic equations: An introduction. Extracta Math, 2001, 16: 303–341

    MATH  MathSciNet  Google Scholar 

  6. DiBenedetto E. Degenerate Parabolic Equations. New York: Springer-Verlag, 1993

    Book  MATH  Google Scholar 

  7. Fang Z B, Li G. Extinction and decay estimates of solutions for a class of doubly degenerate equations. Appl Math Lett, 2012, 25: 1795–1802

    Article  MATH  MathSciNet  Google Scholar 

  8. Fang Z B, Wang M, Li G. Extinction properties of solutions for a p-Laplacian evolution equation with nonlinear source and strong absorption. Math Aeterna, 2013, 3: 579–591

    MATH  MathSciNet  Google Scholar 

  9. Fang Z B, Xu X H. Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources. Nonlinear Anal Real World Appl, 2012, 13: 1780–1789

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujita H. On the blowing up of solutions of the Cauchy problem for u t = Δu + u1+α. J Fac Sci Univ Tokyo Sect A Math, 1966, 16: 105–113

    Google Scholar 

  11. Galaktionov V A, Posashkov S A. Single point blow-up for N-dimensional quasilinear equations with gradient diffusion and source. Indiana Univ Math J, 1991, 40: 1041–1060

    Article  MATH  MathSciNet  Google Scholar 

  12. Galaktionov V A, Vázquez J L. Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Comm Pure Appl Math, 1997, 50: 1–67

    Article  MATH  MathSciNet  Google Scholar 

  13. Giacomoni J, Sauvy P, Shmarev S. Complete quenching for a quasilinear parabolic equation. J Math Anal Appl, 2014, 410: 607–624

    Article  MATH  MathSciNet  Google Scholar 

  14. Gu Y G. Necessary and sufficient conditions of extinction of solution on parabolic equations. Acta Math Sin (Engl Ser), 1994, 37: 73–79

    MathSciNet  Google Scholar 

  15. Hesaaraki M, Moameni A. Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in ℝN. Michigan Math J, 2004, 52: 375–389

    Article  MATH  MathSciNet  Google Scholar 

  16. Jin C H, Yin J X, Zheng S N. Critical Fujita absorption exponent for evolution p-Laplacian with inner absorption and boundary flux. Differential Integral Equations, 2014, 27: 643–658

    MATH  MathSciNet  Google Scholar 

  17. Kwong Y C. Boundary behavior of the fast diffusion equation. Trans Amer Math Soc, 1990, 322: 263–283

    Article  MATH  MathSciNet  Google Scholar 

  18. Levine H A, Payne L E. Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations. J Math Anal Appl, 1976, 55: 329–334

    Article  MATH  MathSciNet  Google Scholar 

  19. Li Y X, Xie C H. Blow-up for p-Laplacian parabolic equations. Electron J Differential Equations, 2003, 20: 1–12

    MATH  MathSciNet  Google Scholar 

  20. Lindqvist P. Notes on the p-Laplace equation. Http://www.math.ntnu.no/~lqvist/p-laplace.pdf, 2006

    MATH  Google Scholar 

  21. Ly I. The first eigenvalue for the p-Laplacian operator. JIPAM J Inequal Pure Appl Math, 2005, 6: Article 91

  22. Mu C L, Zeng R. Single-point blow-up for a doubly degenerate parabolic equation with nonlinear source. Proc Roy Soc Edinburgh Sect A, 2011, 141: 641–654

    Article  MATH  MathSciNet  Google Scholar 

  23. Qu C Y, Bai X L, Zheng S N. Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J Math Anal Appl, 2014, 412: 326–333

    Article  MATH  MathSciNet  Google Scholar 

  24. Quittner P. Blow-up for semilinear parabolic equations with a gradient term. Math Methods Appl Sci, 1991, 14: 413–417

    Article  MATH  MathSciNet  Google Scholar 

  25. Quittner P, Souplet P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Basel: Birkhäuser, 2007

    MATH  Google Scholar 

  26. Simon J. Compact sets in the space L p(0;T;B). Ann Mat Pura Appl (4), 1987, 146: 65–96

    Article  MATH  MathSciNet  Google Scholar 

  27. Souplet P, Weissler F B. Self-similar subsolutions and blowup for nonlinear parabolic equations. J Math Anal Appl, 1997, 212: 60–74

    Article  MATH  MathSciNet  Google Scholar 

  28. Vázquez J L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford: Oxford University Press, 2006

    Book  MATH  Google Scholar 

  29. Wang C P, Zheng S N, Wang Z J. Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data. Nonlinearity, 2007, 20: 1343–1359

    Article  MATH  MathSciNet  Google Scholar 

  30. Winkler M. A strongly degenerate diffusion equation with strong absorption. Math Nachr, 2004, 227: 83–101

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang J G, Yang C X, Zheng S N. Second critical exponent for evolution p-Laplacian equation with weighted source. Math Comput Modelling, 2012, 56: 247–256

    Article  MATH  MathSciNet  Google Scholar 

  32. Yin J X, Jin C H. Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources. Math Methods Appl Sci, 2007, 30: 1147–1167

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang Z C, Li Y. Blowup and existence of global solutions to nonlinear parabolic equations with degenerate diffusion. Electron J Differential Equations, 2013, 264: 1–17

    MathSciNet  Google Scholar 

  34. Zhang Z C, Li Y. Classification of blowup solutions for a parabolic p-Laplacian equation with nonlinear gradient terms. J Math Anal Appl, 2016, 436: 1266–1283

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhao J N. Existence and nonexistence of solutions for u t = div(|∇u|p-2u)+f(∇u; u; x; t). J Math Anal Appl, 1993, 172: 130–146

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhao J N, Liang Z L. Blow-up rate of solutions for p-Laplacian equation. J Partial Differential Equations, 2008, 21: 134–140

    MATH  MathSciNet  Google Scholar 

  37. Zhou J. Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content. Comput Math Appl, 2016, 71: 1163–1172

    Article  MathSciNet  Google Scholar 

  38. Zhou J, Yang D. Upper bound estimate for the blow-up time of an evolution m-Laplace equation involving variable source and positive initial energy. Comput Math Appl, 2015, 69: 1463–1469

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11371286 and 11401458), the Special Fund of Education Department (Grant No. 2013JK0586) and the Youth Natural Science Grant of Shaanxi Province of China (Grant No. 2013JQ1015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengce Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Z. & Zhu, L. Classification of certain qualitative properties of solutions for the quasilinear parabolic equations. Sci. China Math. 61, 855–868 (2018). https://doi.org/10.1007/s11425-016-9077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9077-8

Keywords

MSC(2010)

Navigation