Skip to main content
Log in

Wreath Hurwitz numbers, colored cut-and-join equations, and 2-Toda hierarchy

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let G be arbitrary finite group, define H G (t; p +, p ) to be the generating function of G-wreath double Hurwitz numbers. We prove that H G (t; p +, p ) satisfies a differential equation called the colored cut-and-join equation. Furthermore, H G (t; p +, p ) is a product of several copies of tau functions of the 2-Toda hierarchy, in independent variables. These generalize the corresponding results for ordinary Hurwitz numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich D, Graber T, Vistoli A. Gromov-Witten theory of Deligne-Mumford stacks. Amer J Math, 2008, 130: 1337–1398

    Article  MathSciNet  MATH  Google Scholar 

  2. Aganagic M, Dijkgraaf R, Klemm A, et al. Topological strings and integrable hierarchies. Comm Math Phys, 2006, 261: 451–516

    Article  MathSciNet  MATH  Google Scholar 

  3. Aganagic M, Klemm A, Mariño M, et al. The topological vertex. Comm Math Phys, 2005, 254: 425–478

    Article  MathSciNet  MATH  Google Scholar 

  4. Borot G, Eynard B, Mulase M, et al. A matrix model for simple Hurwitz numbers, and topological recursion. J Geom Phys, 2011, 61: 522–540

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen L. Bouchard-Klemm-Mariño-Pasquetti conjecture for ℂ3. arXiv:0910.3739

  6. Chen W, Ruan Y. Orbifold Gromov-Witten theory. In: Orbifolds in Mathematics and Physics. Contemp Math, 310. Providence, RI: Amer Math Soc, 2002, 25–85

    Chapter  Google Scholar 

  7. Chen L, Li Y, Liu K. Localization, Hurwitz numbers and Witten conjecture. Asian J Math, 2008, 12: 511–518

    MathSciNet  MATH  Google Scholar 

  8. Dijkgraaf R. Mirror symmetry and elliptic curves. In: Dijkgraaf R, van der Geer G, eds. The Moduli Space of Curves. Prog in Math, 129. Boston: Birkhaüser, 1995

    Chapter  Google Scholar 

  9. Donaldson S. Riemann Surfaces. Oxford: Oxford University Press, 2011

    MATH  Google Scholar 

  10. Ekedahl T, Lando S, Shapiro M, et al. Hurwitz numbers and Hodge integrals. C R Acad Sci Paris Sér I Math, 1999, 328: 1175–1180

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel I, Wang W. Virasoro algebra and Wreath product convolution. J Algebra, 2011, 242: 656–671

    Article  MathSciNet  Google Scholar 

  12. Goulden I P, Jackson D M. Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc Amer Math Soc, 1997, 125: 51–60

    Article  MathSciNet  MATH  Google Scholar 

  13. Goulden I P, Jackson D M, Vainshtein A. The number of ramified coverings of the sphere by the torus and surfaces of higher genera. Ann Comb, 2000, 4: 27–46

    Article  MathSciNet  MATH  Google Scholar 

  14. Goulden I P, Jackson D M, Vakil R. A short proof of the λg conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves. J Reine Angew Math, 2009, 637: 175–191

    Article  MathSciNet  MATH  Google Scholar 

  15. Hurwitz A. Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math Ann, 1891, 39: 1–60

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson P. Equivariant Gromov-Witten theory of one dimensional stacks. arXiv:0903.1068

  17. Johnson P, Pandharipande R, Tseng H H. Abelian Hurwitz-Hodge integrals. Michigan Math J, 2011, 60: 171–198

    Article  MathSciNet  MATH  Google Scholar 

  18. Kontsevich M. Intersection theory on the moduli space of curves and the matrix Airy function. Comm Math Phys, 1992, 147: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J, Liu C C, Liu K, et al. A mathematical theory of topological vertex. Geom Topol, 2009, 13: 527–621

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu C C, Liu K, Zhou J. A proof of a conjecture of Mariño-Vafa on Hodge integras. J Differantial Geom, 2003, 65: 289–340

    MATH  Google Scholar 

  21. Liu C C, Liu K, Zhou J. A formula of two-partition Hodge integras. J Amer Math Soc, 2007, 20: 149–184

    Article  MathSciNet  Google Scholar 

  22. Macdonald I G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford: Claredon Press, 1995

    MATH  Google Scholar 

  23. Mariño M, Vafa C. Framed Lnots at Large N. Contemp Math, 310. Providence, RI: Amer Math Soc, 2002

    Google Scholar 

  24. Okounkov A. Toda equations for Hurwitz numbers. Math Res Lett, 2000, 7: 447–453

    MathSciNet  MATH  Google Scholar 

  25. Okounkov A. Infinite wedge and random partitions. Selecta Math New Ser, 2001, 7: 57–81

    Article  MathSciNet  MATH  Google Scholar 

  26. Ueno K, Takasaki K. Toda lattice hierarchy. Adv Stud Pure Math, 1984, 4: 1–95

    MathSciNet  Google Scholar 

  27. Witten E. Two-dimensional gravity and intersection theory on moduli space. Surveys Differential Geom, 1991, 1: 243–310

    MathSciNet  Google Scholar 

  28. Zhou J. Hodge integrals, Hurwitz numbers, and symmetric groups. arXiv:math.AG/0308024

  29. Zhou J. Local mirror symmetry for one-legged topological vertex. arXiv:0910.4320

  30. Zhou J. Local mirror symmetry for the topological vertex. arXiv:0911.2343

  31. Zhou J. Hodge intrgrals and integrable hierarchies. Lett Math Phys, 2010, 93: 55–71

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhou, J. Wreath Hurwitz numbers, colored cut-and-join equations, and 2-Toda hierarchy. Sci. China Math. 55, 1627–1646 (2012). https://doi.org/10.1007/s11425-012-4383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4383-1

Keywords

MSC(2010)

Navigation