Skip to main content
Log in

Robust estimation in inverse problems via quantile coupling

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article we consider a sequence of hierarchical space model of inverse problems. The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means. The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable, and an automatic selection principle for the nonrandom filters. This leads to the data-driven choice of weights. We also give an algorithm for its implementation. The quantile coupling inequality developed in this paper is of independent interest, because it includes the median coupling inequality in literature as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bártfai P. Über die Entfernung der Irrfahrtswege. Studia Sci Math Hungar, 1970, 5: 41–49

    MathSciNet  MATH  Google Scholar 

  2. Brown L D, Cai T T, Zhou H H. Robust nonparametric estimation via wavelet median regression. Ann Statist, 2008, 36: 2055–2084

    Article  MathSciNet  MATH  Google Scholar 

  3. Burnashev M V. Asymptotic expansions for median estimate of a parameter. Theory Probab Appl, 1996, 41: 632–645

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai T. Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann Statist, 1999, 27: 898–924

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès E J, Donoho D L. Recovering edges in ill-posed inverse problems: Optimality of curvelet frames. Ann Statist, 2002, 30: 784–842

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavalier L, Golubev G K, Picard D, et al. Oracle inequalities for inverse problems. Ann Statist, 2002, 30: 843–874

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalier L, Tsybakov A. Sharp adaptation for inverse problems with random noise. Probab Theory Related Fields, 2002, 123: 323–354

    Article  MathSciNet  MATH  Google Scholar 

  8. Csörgő M, Révész P. A new method to prove Strassen type laws of invariance principle I–II. ZWahrscheinlichkeitstheorie verw Geb, 1975, 31: 255–259 and 261–269

    Article  Google Scholar 

  9. Cramér H. Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press, 1946

    MATH  Google Scholar 

  10. Johnstone I M. Wavelet shrinkage for correlated data and inverse problems: Adaptivity results. Statist Sinica, 1999, 9: 51–83

    MathSciNet  MATH  Google Scholar 

  11. Kolmogorov A N. Method of median in the theory of errors. Mat Sb, 1931, 38: 47–50

    Google Scholar 

  12. Komlós J, Major P, Tusnády G. An approximation of partial sums of independent RV’-s and the sample DF. I. Z Wahrscheinlichkeitstheorie verw Geb, 1975, 32: 111–131

    Article  MATH  Google Scholar 

  13. Komlós J, Major P, Tusnády G. An approximation of partial sums of independent RV’-s and the sample DF. II. Z Wahrscheinlichkeitstheorie verw Geb, 1976, 34: 33–58

    Article  MATH  Google Scholar 

  14. Hall P, Patil P. On the choice of smoothing parameter, threshold and truncation in nonparametric regression by wavelet methods. J Roy Statist Soc Ser B, 1996, 58: 361–377

    MathSciNet  MATH  Google Scholar 

  15. Hájek J, Šidák Z. Theory of Rank Tests. Prague: CSAV, 1967

    MATH  Google Scholar 

  16. Pinsker M S. Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform Transmission, 1980, 16: 120–133

    MATH  Google Scholar 

  17. Pollard D P. A User’s Guide to Measure Theoretic Probability. Cambridge: Cambridge University Press, 2001

    Book  Google Scholar 

  18. Reis R D. Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics. New York: Springer-Verlag, 1989

    Book  Google Scholar 

  19. Stuck B W, Kleiner B. A statistical analysis of telephone noise. Bell System Technical J, 1974, 53: 1263–1320

    Google Scholar 

  20. Stuck B W. A historical overview of stable probability distributions in signal processing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington: IEEE, 2000, 3795–3797

    Google Scholar 

  21. Tian M Z, Chan N H. Saddle point approximation and volatility estimation of value-at-risk. Statist Sinica, 2010, 20: 1239–1256

    MathSciNet  MATH  Google Scholar 

  22. Tian M Z, Chen G M. Hierarchical linear regression models for conditional quantiles. Sci China Ser A, 2006, 49: 11–16

    Article  MathSciNet  Google Scholar 

  23. Tian M Z, Tang M L, Chan P S. Semiparametric quantile modelling of hierarchical data. Acta Math Sin, 2009, 25: 597–616

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaoZai Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M. Robust estimation in inverse problems via quantile coupling. Sci. China Math. 55, 1029–1041 (2012). https://doi.org/10.1007/s11425-012-4365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4365-3

Keywords

MSC(2010)

Navigation