Skip to main content
Log in

Semiparametric quantile modelling of hierarchical data

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-1 model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindley, D. V., Smith, A. F. M.: Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B, 34, 1–41 (1972)

    MathSciNet  MATH  Google Scholar 

  2. Smith, A. F. M.: A general Bayesian linear model. Journal of the Royal Statistical Society, Series B, 35, 67–75 (1973)

    MATH  Google Scholar 

  3. Goldstein, H.: Multilevel statistical models, (2nd ed), New York, John Wiley, 1995

    Google Scholar 

  4. Mason, W. M., Wong, G. M., Entwistle, B.: Contextual analysis through the multilevel linear model. In S. Leinhardt (Ed.) Sociological methodology, San francisco, Jossey-Bass, 1983, 72–103

    Google Scholar 

  5. Elston, R. C., Grizzle, J. E.: Estimation of time response curves and their confidence bands. Biometrics, 18, 148–159 (1962)

    Article  MATH  Google Scholar 

  6. Singer, J. D.: Using SAS PROC MIXED to fit multilevel models, hierarchical models and individual growth models. Journal of Educational and Behavioral Statistics, 23, 323–355 (1998)

    Google Scholar 

  7. Rosenberg, B.: Linear regression with randomly dispersed parameters. Biometrika, 60, 61–75 (1973)

    Article  Google Scholar 

  8. Longford, N.: Random coefficient models, Oxford, Clarendon, 1993

    MATH  Google Scholar 

  9. Dempster, A. P., Rubin, D. B., Tsutakawa, R. K.: Estimation in covariance components models. Journal of the American Statistical Association, 76, 341–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Longford, N.: A fast scoring algorithm for maximum likelihood estimation in unbalanced models with nested random effects. Biometrika, 74, 817–827 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koenker, R., Bassett, G.: Regression quantiles. Econometrica, 46, 33–50 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhattacharya, P. K., Gangopadhyay, A. K.: Kernel and nearest-neighbor estimation of a conditional quantile. Ann. Statist, 18, 1400–1415 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaudhuri, P.: Nonparametric estimates of Regression Quantiles and their local Bahadur Representation. The Annals of Statistics, 2, 760–777 (1991)

    Article  MathSciNet  Google Scholar 

  14. Fan, J., Hu, T. C., Truong, Y. K.: Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433–446 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Koenker, R., Ng, P., Portnoy, S.: Quantile smooth splines. Biometrika, 81, 673–680 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, K., Jones, M. C.: Local linear quantile regression. Journal of the American statistical Association, 93, 228–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Gooijer, J. G., Gannoun, A., Zerom, D.: Mean square error properties of the kernel-based multistage median predictor for time series. Statistics & Probability letters, 56, 51–56 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tian, M. Z., Chen, G. M.: Hierarchical Linear Regression Models for Conditional Quantiles. Science in China Series A, Mathematics, 49, 11–16 (2006)

    Article  MathSciNet  Google Scholar 

  19. Chaudhuri, P., Doksum, K., Samarov: On average derivative quantile regression. The Annals of Statistics, 25, 715–744 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, J., Farmen, M.: Local maximum likelihood estimation and inference. Journal of the Royal Statistical Society, Series B, 60, 591–608 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bryk, A. S., Rausendenbush, S. W.: Hierarchical Linear Models, SAGE Publications, Inc., 1992

  22. Huttenlocher, J. E., Haight, W., Bryk, A. S., Seltzer, M.: Early vocabulary growth: relation to language input and gender. Developmental Psychology, 27, 236–249 (1991)

    Article  Google Scholar 

  23. Silverman, B. W.: Density Estimation for Statistics and Data Analysis, Vol. 26 of Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986

    MATH  Google Scholar 

  24. Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons, New York, Chichester, 1992

    Book  MATH  Google Scholar 

  25. Ruppert, D., Sheather, S. J., Wand, M. P.: An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90, 1257–1270 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gooijer, Zerom: On additive conditional quantiles with high-dimensional covariates. Journal of the American Statistical Association, 98, 135–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hogg, R. V., Craig, A. T.: Introduction to Mathematical Statistics, 5-th ed. New York, Macmillan, 1995

    Google Scholar 

  28. Müller, H. G., Stadtmüller, U.: Estimation of herteroscadasticity in regression analysis. The Annals of Statistics, 15, 610–625 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jurečkovă, J., Sen, P. K.: On adaptive scale-equivariant M-estimators in linear models. Statistics & Decisions, Supplement Issue, 1, 31–46 (1984)

    Google Scholar 

  30. Hendricks, W., Koenker, R.: Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American statistical Association, 87, 58–68 (1992)

    Article  Google Scholar 

  31. Koenker, R., Machado, J. A. F.: Goodness of fit and related inference processes for quantile regression. Journal of the American statistical Association, 94, 1296–1310 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Billingsley, P.: Convergence of Probability Measures, New York: John Wiley & Sons, Inc., 1968

    MATH  Google Scholar 

  33. Ruppert, D., Carroll, R. J.: Trimmed least-squares estimation in the linear model. Journal of the American Statistical Association, 75, 828–838 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jurečkovă, J.: Regression quantiles and trimmed least squares estimator under a general design. Kybernetika, 20, 345–356 (1984)

    MathSciNet  MATH  Google Scholar 

  35. Sen, P. K.: On the Bahadur Representation of sample quantiles for sequences of ϕ-mixing random variables. Journal of Multivariate analysis, 2, 77–95 (1972)

    Article  MathSciNet  Google Scholar 

  36. Chen, E. J., Kelton, W. D.: Simulation-based estimation of quantiles, Proceedings of the 1999 Winter Simulation Conference, ed. P.A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, 428–434. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, 1999

    Google Scholar 

  37. Billingsley, P.: Convergence of Probability Measures, 2nd ed. New York, John Wiley & Sons, Inc., 1999

    MATH  Google Scholar 

  38. David, H. A.: Order Statistics, 2nd ed. New York: Wiley, 1981

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Zai Tian.

Additional information

Research partially supported by the National Natural Science Foundation of China (NSFC) under grant (No. 10871201), the Key Project of Chinese Ministry of Education (No. 108120), National Philosophy and Social Science Foundation Grant (No. 07BTJ002), 2006 New Century Excellent Talents Program (NCET), HKBU261007 and The Chinese University of Hong Kong Faculty of Science Direct Grant 2060333

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M.Z., Tang, M.L. & Chan, P.S. Semiparametric quantile modelling of hierarchical data. Acta. Math. Sin.-English Ser. 25, 597–616 (2009). https://doi.org/10.1007/s10114-008-7220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-008-7220-2

Keywords

MR(2000) Subject Classification

Navigation