Skip to main content
Log in

Finite element formulation based on proper orthogonal decomposition for parabolic equations

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomée V. Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer, 1997

    MATH  Google Scholar 

  2. Luo Z D. Mixed Finite Element Methods and Applications. Beijing: Science Press, 2006

    Google Scholar 

  3. Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996

    MATH  Google Scholar 

  4. Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990

    MATH  Google Scholar 

  5. Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 2002

    MATH  Google Scholar 

  6. Crommelin D T, Majda A J. Strategies for model reduction: comparing different optimal bases. J Atmos Sci, 61: 2306–2317 (2004)

    MathSciNet  Google Scholar 

  7. Majda A J, Timofeyev I, Vanden-Eijnden E. Systematic strategies for stochastic mode reduction in climate. J Atmos Sci, 60: 1705–1723 (2003)

    Article  MathSciNet  Google Scholar 

  8. Selten F. Barophilic empirical orthogonal functions as basis functions in an atmospheric model. J Atmos Sci, 54: 2100–2114 (1997)

    Google Scholar 

  9. Lumley J L. Coherent structures in turbulence. In: Meyer R E, ed. Transition and Turbulence. New York: Academic Press, 1981

    Google Scholar 

  10. Aubry N, Holmes P, Lumley J L, et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Dyn, 192: 115–173 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III. Quart Appl Math, 45(3): 561–590 (1987)

    MATH  MathSciNet  Google Scholar 

  12. Joslin R D, Gunzburger M D, Nicolaides R A, et al. A self-contained automated methodology for optimal flow control validated for transition delay. AIAA J, 35: 816–824 (1997)

    Article  MATH  Google Scholar 

  13. Ly H V, Tran H T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quart Appl Math, 60: 631–656 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Moin P, Moser R D. Characteristic-eddy decomposition of turbulence in channel. J Fluid Mech, 200: 417–509 (1989)

    Article  MathSciNet  Google Scholar 

  15. Rajaee M, Karlsson S K F, Sirovich L. Low dimensional description of free shear flow coherent structures and their dynamical behavior. J Fluid Mech, 258: 1401–1402 (1994)

    Article  Google Scholar 

  16. Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 90: 117–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 40(2): 492–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Adams R A. Sobolev Space. New York: Academic Press, 1975

    Google Scholar 

  19. Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978

    MATH  Google Scholar 

  20. Luo Z D, Chen J, Navon I M, et al. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. SIAM J Num Anal, 47(1): 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  21. Luo Z D, Chen J, Navon I M, et al. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Internat J Numer Methods Fluids, published online: DOI: 10.1002/fld.1900

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Additional information

This work was supported by National Natural Science Foundation of China (Grant Nos. 10871022, 10771065, and 60573158) and Natural Science Foundation of Hebei Province (Grant No. A2007001027)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Chen, J., Sun, P. et al. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci. China Ser. A-Math. 52, 585–596 (2009). https://doi.org/10.1007/s11425-008-0125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0125-9

Keywords

MSC(2000)

Navigation