Skip to main content
Log in

VerifyRealRoots: A Matlab Package for Computing Verified Real Solutions of Polynomials Systems of Equations and Inequalities

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

VerifyRealRoots is a Matlab package for computing and verifying real solutions of polynomial systems of equations and inequalities. It calls Bertini or MMCRSolver for finding approximate real solutions and then applies AINLSS to verify the existence of a regular solution of a polynomial system or applies AINLSS2 (AIVISS) to verify the existence of a double solution (a singular solution of an arbitrary multiplicity) of a slightly perturbed polynomial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canny J, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, USA, 1988.

    MATH  Google Scholar 

  2. Fløystad G, Kileel J, and Ottaviani G, The Chow form of the essential variety in computer vision, Journal of Symbolic Computation, 2017, 86: 97–119.

    Article  MathSciNet  MATH  Google Scholar 

  3. Petitjean S, Algebraic geometry and computer vision: Polynomial systems, real and complex roots, J. Math. Imaging Vis., 1999, 10(3): 191–220.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sommese A J and Wampler C W, The Numerical Solution of Systems of Polynomials — Arising in Engineering and Science, World Scientific, 2005, I–XXII: 1–401.

    MATH  Google Scholar 

  5. Collins G E, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Lecture Notes in Computer Science, 1975, 33: 134–183.

    Article  MathSciNet  Google Scholar 

  6. Basu S, Pollack R, and Roy M F, On the combinatorial and algebraic complexity of quantifier elimination, Journal of ACM, 1996, 43(6): 1002–1045.

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu S, Pollack R, and Roy M F, Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer Vienna, Vienna, Chapter A new algorithm to find a point in every cell defined by a family of polynomials, 1998, 341–350.

  8. Heintz J, Roy M F, and Solernó P, On the theoretical and practical complexity of the existential theory of reals, The Computer Journal, 1993, 36(5): 427–431.

    Article  MathSciNet  MATH  Google Scholar 

  9. Renegar J, On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction, Preliminaries, The geometry of semi-algebraic sets, The decision problem for the existential theory of the reals, Journal of Symbolic Computation, 1992, 13(3): 255–299.

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins G E and Hong H, Partial cylindrical algebraic decomposition for quantifier elimination, Journal of Symbolic Computation, 1991, 12(3): 299–328.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown C W, QEPCAD B: A program for computing with semi-algebraic sets using CADs, SIGSAM Bull., 2003, 37(4): 97–108.

    Article  MATH  Google Scholar 

  12. Seidl A and Sturm T, A generic projection operator for partial cylindrical algebraic decomposition, Proceedings of the 28th International Symposium on Symbolic and Algebraic Computation, 2003, 240–247.

  13. Yanami H and Anai H, The maple package SyNRAC and its application to robust control design, Future Generation Computer Systems, 2007, 23(5): 721–726.

    Article  Google Scholar 

  14. Xia B, DISCOVERER: A tool for solving semi-algebraic systems, ACM Commun. Comput. Algebra, 2007, 41(3): 102–103.

    Article  Google Scholar 

  15. Xia B and Yang L, An algorithm for isolating the real solutions of semi-algebraic systems, Journal of Symbolic Computation, 2002, 34(5): 461–477.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen C and Maza M M, Quantifier elimination by cylindrical algebraic decomposition based on regular chains, Journal of Symbolic Computation, 2016, 75: 74–93.

    Article  MathSciNet  MATH  Google Scholar 

  17. Aubry P, Rouillier F, and Safey El Din M, Real solving for positive dimensional systems, Journal of Symbolic Computation, 2002, 34(6): 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bank B, Giusti M, Heintz J, et al., Polar varieties and efficient real elimination, Mathematische Zeitschrift, 2001, 238(1): 115–144.

    Article  MathSciNet  MATH  Google Scholar 

  19. Bank B, Giusti M, Heintz J, et al., On the geometry of polar varieties, Applicable Algebra in Engineering, Communication and Computing, 2010, 21(1): 33–83.

    Article  MathSciNet  MATH  Google Scholar 

  20. Rouillier F, Roy M F, and Safey El Din M, Finding at least one point in each connected component of a real algebraic set defined by a single equation, Journal of Complexity, 2000, 16(4): 716–750.

    Article  MathSciNet  MATH  Google Scholar 

  21. Safey El Din M and Schost E, Polar varieties and computation of one point in each connected component of a smooth real algebraic set, Proceedings of the 28th International Symposium on Symbolic and Algebraic Computation, 2003, 224–231.

  22. Safey El Din M, Raglib (Real Algebraic Geometry Library), Maple Package, 2007.

  23. Beltrán C and Leykin A, Certified numerical homotopy tracking, Experimental Mathematics, 2012, 21: 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  24. Beltrán C and Leykin A, Robust certified numerical homotopy tracking, Foundations of Computational Mathematics, 2013, 13(2): 253–295.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hauenstein J D and Sottile F, Algorithm 921: AlphaCertified: Certifying solutions to polynomial systems, ACM Trans. Math. Softw., 2012, 38(4): 28:1–28:20.

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen F, Wu W, and Xia B, Real root isolation of polynomial equations based on hybrid computation, Computer Mathematics: 9th Asian Symposium (ASCM 2009), 2014, 375–396.

  27. Wang Y and Xia B, A Hybrid procedure for finding real points on a real algebraic set, Journal of Systems Science and Complexity, 2019, 32(1): 185–204.

    Article  MathSciNet  MATH  Google Scholar 

  28. Krawczyk R, Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken, Computing, 1969, 4(3): 187–201.

    Article  MathSciNet  MATH  Google Scholar 

  29. Moore R E, A test for existence of solutions to nonlinear systems, SIAM Journal on Numerical Analysis, 1977, 14(4): 611–615.

    Article  MathSciNet  MATH  Google Scholar 

  30. Rump S M, Solving algebraic problems with high accuracy, Proc. of the Symposium on a New Approach to Scientific Computation, 1983, 51–120.

  31. Li N and Zhi L, Verified error bounds for isolated singular solutions of polynomial systems: Case of breadth one, Theoretical Computer Science, 2013, 479: 163–173.

    Article  MathSciNet  MATH  Google Scholar 

  32. Li N and Zhi L, Verified error bounds for isolated singular solutions of polynomial systems, SIAM Journal on Numerical Analysis, 2014, 52(4): 1623–1640.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rump S M and Graillat S, Verified error bounds for multiple roots of systems of nonlinear equations, Numerical Algorithms, 2010, 54(3): 359–377.

    Article  MathSciNet  MATH  Google Scholar 

  34. Hauenstein J D, Mourrain B, and Szanto A, Certifying isolated singular points and their multiplicity structure, Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, 2015, 213–220.

  35. Mantzaflaris A and Mourrain B, Deflation and certified isolation of singular zeros of polynomial systems, Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 2011, 249–256.

  36. Rump S M, INTLAB — INTerval LABoratory, Developments in Reliable Computing, Springer, Dordrecht, 1999, 77–104.

    Chapter  Google Scholar 

  37. Akoglu T A, Hauenstein J D, and Szanto A, Certifying solutions to overdetermined and singular polynomial systems over Q, Journal of Symbolic Computation, 2018, 84: 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen X, Frommer A, and Lang B, computational existence proofs for spherical T-designs, Nummer. Math., 2011, 117(2): 289–305.

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen X and Womersley R S, Existence of solutions to systems of underdetermined equations and spherical designs, SIAM J. NUMER. ANAL., 2006, 44(6): 2326–2341.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sommese A J and Verschelde J, Numerical homotopies to compute generic points on positive dimensional algebraic sets, Journal of Complexity, 2000, 16(3): 572–602.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sommese A J, Verschelde J, and Wampler C W, Numerical algebraic geometry, The Mathematics of Numerical Analysis (Park City, UT, 1995), 1996, 749–763.

  42. Everett H, Lazard D, Lazard S, et al., The voronoi diagram of three lines, Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, 2007, 255–264.

  43. Yang Z, Zhi Li, and Zhu Y, Verified error bounds for real solutions of positive-dimensional polynomial systems, Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, 2013, 371–378.

  44. Graziano C, Garulli A, Tesi A, et al., Characterizing the solution set of polynomial systems in terms of homogeneous forms: An LMI approach, International Journal of Robust and Nonlinear Control, 2003, 13(13): 1239–1257.

    Article  MathSciNet  MATH  Google Scholar 

  45. Henrion D and Lasserre J B, Detecting global optimality and extracting solutions in GloptiPoly, Positive Polynomials in Control, 2005, 312: 293–310.

    Article  MathSciNet  MATH  Google Scholar 

  46. Lasserre J B, Laurent M, and Rostalski P, Semidefinite characterization and computation of zero-dimensional real radical ideals, Foundations of Computational Mathematics, 2008, 8: 607–647.

    Article  MathSciNet  MATH  Google Scholar 

  47. Lasserre J B, Moments, Positive Polynomials and Their Applications, Imperial College Press, London, 2009.

    Book  Google Scholar 

  48. Ma Y and Zhi L, Computing real solutions of polynomial systems via low-rank moment matrix completion, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, 2012, 249–256.

  49. Leykin A, Verschelde J, and Zhao A, Newton’s method with deflation for isolated singularities of polynomial systems, Theoretical Computer Science, 2006, 359(1): 111–122.

    Article  MathSciNet  MATH  Google Scholar 

  50. Greuet A and Safey El Din M, Deciding reachability of the infimum of a multivariate polynomial, Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 2011, 131–138.

  51. Rouillier F, Efficient algorithms based on critical points method, Algorithmic and Quantitative Real Algebraic Geometry, American Mathematical Society, Providence, 2003, 123–138.

    Chapter  Google Scholar 

  52. Bank B, Giusti M, Heintz J, et al., Algorithms of intrinsic complexity for point searching in compact real singular hypersurfaces, Foundations of Computational Mathematics, 2012, 12: 75–122.

    Article  MathSciNet  MATH  Google Scholar 

  53. Mork H C and Piene R, Polars of real singular plane curves, Algorithm in Algebraic Geometry, Springer, New York, 2008, 99–115.

    Chapter  Google Scholar 

  54. Hauenstein J D, Numerically computing real points on algebraic sets, Acta Applicandae Mathematicae, 2013, 125(1): 105–119.

    Article  MathSciNet  MATH  Google Scholar 

  55. Bates D J, Hauenstein J D, Sommese A J, et al., Bertini: Software for Numerical Algebraic Geometry, http://www.nd.edu/∼sommese/bertini, 2018.

  56. Li N and Zhi L, Computing isolated singular solutions of polynomial systems: Case of breadth one, SIAM Journal on Numerical Analysis, 2012, 50(1): 354–372.

    Article  MathSciNet  MATH  Google Scholar 

  57. Bachoc C and Vallentin F, New upper bounds for kissing numbers from semidefinite programming, Journal of the American Mathematical Society, 2008, 21(3): 909–924.

    Article  MathSciNet  MATH  Google Scholar 

  58. Palancz B, Application of Dixon resultant to satellite trajectory control by pole placement, Journal of Symbolic Computation, 2013, 50: 79–99.

    Article  MathSciNet  MATH  Google Scholar 

  59. Verschelde J and Wang Y, Computing dynamic output feedback laws, IEEE Trans. Automatic Control, 2004, 49(8): 1393–1397.

    Article  MathSciNet  MATH  Google Scholar 

  60. Dietmater P, The Stewart-Gough platform of general geometry can have 40 real postures, Advances in Robot Kinematics: Analysis and Control, 1998, 1–10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengfeng Yang, Hanrui Zhao or Lihong Zhi.

Additional information

This research is supported by the National Key Research Project of China under Grant No. 2018YFA0306702, and the National Natural Science Foundation of China under Grant Nos. 12171159, 12071467 and 61772203, and Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhao, H. & Zhi, L. VerifyRealRoots: A Matlab Package for Computing Verified Real Solutions of Polynomials Systems of Equations and Inequalities. J Syst Sci Complex 36, 866–883 (2023). https://doi.org/10.1007/s11424-023-1406-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1406-7

Keywords

Navigation