Skip to main content
Log in

Scaffolding argumentation about water quality: a mixed-method study in a rural middle school

  • Research Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

A common way for students to develop scientific argumentation abilities is through argumentation about socioscientific issues, defined as scientific problems with social, ethical, and moral aspects. Computer-based scaffolding can support students in this process. In this mixed method study, we examined the use and impact of computer based scaffolding to support middle school students’ creation of evidence-based arguments during a 3-week problem-based learning unit focused on the water quality of a local river. We found a significant and substantial impact on the argument evaluation ability of lower-achieving students, and preliminary evidence of an impact on argument evaluation ability among low-SES students. We also found that students used the various available support—computer-based scaffolding, teacher scaffolding, and groupmate support—in different ways to counter differing challenges. We then formulated changes to the scaffolds on the basis of research results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abi-El-Mona, I., & Abd-El-Khalick, F. (2011). Perceptions of the nature and “goodness” of argument among college students, science teachers, and scientists. International Journal of Science Education, 33(4), 573–605. doi:10.1080/09500691003677889.

    Article  Google Scholar 

  • Achieve. (2013). Next generation science standards. Retrieved August 8, 2013, from http://www.nextgenscience.org/next-generation-science-standards.

  • Akhras, F. N., & Self, J. A. (2002). Beyond intelligent tutoring systems: Situations, interactions, processes and affordances. Instructional Science, 30(1), 1–30. doi:10.1023/A:1013544300305.

    Article  Google Scholar 

  • Azevedo, R., Winters, F. I., & Moos, D. C. (2004). Can students collaboratively use hypermedia to learn science? The dynamics of self- and other-regulatory processes in an ecology classroom. Journal of Educational Computing Research, 31(3), 215–245. doi:10.2190/HFT6-8EB1-TN99-MJVQ.

    Article  Google Scholar 

  • Bell, P. (1997). Using argument representations to make thinking visible for individuals and groups. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of CSCL’97: The second international conference on computer support for collaborative learning (pp. 10–19). Toronto: University of Toronto Press.

    Chapter  Google Scholar 

  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments during problem-based learning: The impact of computer-based scaffolds. Educational Technology Research and Development, 58(3), 285–309. doi:10.1007/s11423-009-9139-4.

    Article  Google Scholar 

  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 505–518). New York: Springer.

    Chapter  Google Scholar 

  • Belland, B. R., Burdo, R., & Gu, J. (2015). From lecturing to scaffolding: One middle school science teacher’s transformation. Journal of Science Teacher Education. doi:10.1007/s10972-015-9419-2.

  • Belland, B. R., & Drake, J. (2013). Toward a framework on how affordances and motives can drive different uses of computer-based scaffolds: Theory, evidence, and design implications. Educational Technology Research and Development, 61, 903–925. doi:10.1007/s11423-013-9313-6.

    Article  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 56(4), 401–422. doi:10.1007/s11423-007-9074-1.

    Article  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2011). Problem-based learning and argumentation: Testing a scaffolding framework to support middle school students’ creation of evidence-based arguments. Instructional Science, 39(5), 667–694. doi:10.1007/s11251-010-9148-z.

    Article  Google Scholar 

  • Belland, B. R., Kim, C., & Hannafin, M. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(4), 243–270. doi:10.1080/00461520.2013.838920.

    Article  Google Scholar 

  • Belland, B. R., Walker, A., Kim, N., & Lefler, M. (2014). A preliminary meta-analysis on the influence of scaffolding characteristics and study and assessment quality on cognitive outcomes in STEM education. In Presented at the 2014 Annual Meeting of the Cognitive Science Society, Québec City.

  • Blumer, H. (1969). Symbolic interactionism: Perspective and method. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Boehner, J. A. H.R.1—No Child Left Behind Act of 2001, Pub. L. No. 107-110 (2001). Retrieved from http://www.gpo.gov/fdsys/pkg/PLAW-107publ110/html/PLAW-107publ110.htm.

  • Buckland, L. A., & Chinn, C. A. (2010). Model-evidence link diagrams: a scaffold for model-based reasoning. In Proceedings of the 9th International Conference of the Learning SciencesVolume 2 (pp. 449–450). Chicago, IL, USA: International Society of the Learning Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1854509.1854741.

  • Census. (2014). State Median Income. Retrieved from https://www.census.gov/hhes/www/income/data/statemedian/.

  • Chan, L. K., Patil, N. G., Chen, J. Y., Lam, J. C. M., Lau, C. S., & Ip, M. S. M. (2010). Advantages of video trigger in problem-based learning. Medical Teacher, 32(9), 760–765. doi:10.3109/01421591003686260.

    Article  Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi:10.1002/sce.10001.

    Article  Google Scholar 

  • Cho, K., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem-solving. Educational Technology Research and Development, 50(3), 5–22. doi:10.1007/BF02505022.

    Article  Google Scholar 

  • Clark, D. B., & Sampson, V. D. (2007). Personally-seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253–277. doi:10.1080/09500690600560944.

    Article  Google Scholar 

  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124–130. doi:10.1207/s15430421tip3903_2.

    Article  Google Scholar 

  • Cruse, C., & Powers, D. (2006). Estimating school district poverty with free and reduced-price lunch data. Retrieved from http://www.census.gov/did/www/saipe/publications/files/CrusePowers2006asa.pdf.

  • Cuevas, H. M., Fiore, S. M., & Oser, R. L. (2002). Scaffolding cognitive and metacognitive processes in low verbal ability learners: Use of diagrams in computer-based training environments. Instructional Science, 30(6), 433–464. doi:10.1023/A:1020516301541.

    Article  Google Scholar 

  • Cuevas, P., Lee, O., Hart, J., & Deaktor, R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337–357. doi:10.1002/tea.20053.

    Article  Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. doi:10.1002/(SICI)1098-237X(200005)84:3.

    Article  Google Scholar 

  • Eisenhart, M. (2009). Generalization from qualitative inquiry. In K. Ercikan & W.-M. Roth (Eds.), Generalizing from educational research: Beyond qualitative and quantitative polarization (pp. 51–66). New York: Routledge.

    Google Scholar 

  • Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207–245. doi:10.1080/07370008.2012.689383.

    Article  Google Scholar 

  • Gelman, A. (2004). Exploratory data analysis for complex models. Journal of Computational and Graphical Statistics, 13(4), 755–779. doi:10.1198/106186004X11435.

    Article  Google Scholar 

  • Giere, R. N. (1990). Explaining science: A cognitive approach. Chicago: University of Chicago Press.

    Google Scholar 

  • Glassner, A., Weinstock, M., & Neuman, Y. (2005). Pupils’ evaluation and generation of evidence and explanation in argumentation. British Journal of Educational Psychology, 75, 105–118. doi:10.1348/000709904X22278.

    Article  Google Scholar 

  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266. doi:10.1023/B:EDPR.0000034022.16470.f3.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., & Barrows, H. S. (2006). Goals and strategies of a problem-based learning facilitator. Interdisciplinary Journal of Problem-Based Learning, 1(1), 21–39. doi:10.7771/1541-5015.1004.

    Article  Google Scholar 

  • Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students’ and scientists’ reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663–687. doi:10.1002/tea.1025.

    Article  Google Scholar 

  • Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14–26. doi:10.3102/0013189X033007014.

    Article  Google Scholar 

  • Jonassen, D. H., & Kim, B. (2010). Arguing to learn and learning to argue: Design justifications and guidelines. Educational Technology Research and Development, 58(4), 439–457. doi:10.1007/s11423-009-9143-8.

    Article  Google Scholar 

  • Klosterman, M. L., Sadler, T. D., & Brown, J. (2011). Science teachers’ use of mass media to address socio-scientific and sustainability issues. Research in Science Education, 42(1), 51–74. doi:10.1007/s11165-011-9256-z.

    Article  Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310. doi:10.1002/sce.1011.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824. doi:10.1002/sce.20395.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104. doi:10.1080/13546780600625447.

    Article  Google Scholar 

  • Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277–311. doi:10.1080/07370000903221718.

    Article  Google Scholar 

  • Loyens, S. M. M., Magda, J., & Rikers, R. M. J. P. (2008). Self-directed learning in problem-based learning and its relationships with self-regulated learning. Educational Psychology Review, 20(4), 411–427. doi:10.1007/s10648-008-9082-7.

    Article  Google Scholar 

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations (M. Lopez-Morillas & L. Solotaroff, Trans., M. Cole, Ed.). Cambridge, MA, USA: Harvard University Press.

  • Lynch, S. (2001). “Science for all” is not equal to “one size fits all”: Linguistic and cultural diversity and science education reform. Journal of Research in Science Teaching, 38(5), 622–627. doi:10.1002/tea.1021.

    Article  Google Scholar 

  • Lynch, S., Kuipers, J., Pyke, C., & Szesze, M. (2005). Examining the effects of a highly rated science curriculum unit on diverse students: Results from a planning grant. Journal of Research in Science Teaching, 42(8), 912–946. doi:10.1002/tea.20080.

    Article  Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1984). Drawing valid meaning from qualitative data: Toward a shared craft. Educational Researcher, 13(5), 20–30. doi:10.3102/0013189X013005020.

    Article  Google Scholar 

  • Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students’ assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711–744. doi:10.1002/tea.20420.

    Article  Google Scholar 

  • Nunnally, J. C. (1978). Psychometric theory. New York, NY: McGraw-Hill.

    Google Scholar 

  • Oh, S., & Jonassen, D. H. (2007). Scaffolding online argumentation during problem solving. Journal of Computer Assisted learning, 23(2), 95–110. doi:10.1111/j.1365-2729.2006.00206.x.

    Article  Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. doi:10.1126/science.1183944.

    Article  Google Scholar 

  • Osiurak, F., Jarry, C., & Le Gall, D. (2010). Grasping the affordances, understanding the reasoning: Toward a dialectical theory of human tool use. Psychological Review, 117(2), 517–540. doi:10.1037/a0019004.

    Article  Google Scholar 

  • Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543–578. doi:10.3102/00346543066004543.

    Article  Google Scholar 

  • Patton, M. Q. (2002). Qualitative research & evaluation methods (3rd ed.). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1958). The new rhetoric: Treatise on argumentation. Paris: Presses Universitaires de France.

    Google Scholar 

  • Quintana, C., Krajcik, J., & Soloway, E. (2003). Issues and approaches for developing learner-centered technology. Advances in Computers, 57, 271–321. doi:10.1016/S0065-2458(03)57006-1.

    Article  Google Scholar 

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. doi:10.1207/s15327809jls1303_2.

    Article  Google Scholar 

  • Rivard, L. P. (2004). Are language-based activities in science effective for all students, including low achievers? Science Education, 88(3), 420–442. doi:10.1002/sce.10114.

    Article  Google Scholar 

  • Roelle, J., & Berthold, K. (2013). The expertise reversal effect in prompting focused processing of instructional explanations. Instructional Science, 41(4), 635–656. doi:10.1007/s11251-012-9247-0.

    Article  Google Scholar 

  • Rose, S. L., & Barton, A. C. (2012). Should great lakes city build a new power plant? How youth navigate socioscientific issues. Journal of Research in Science Teaching, 49(5), 541–567. doi:10.1002/tea.21017.

    Article  Google Scholar 

  • Ruiz-Primo, M. A., & Furtak, E. M. (2006). Informal formative assessment and scientific inquiry: Exploring teachers’ practices and student learning. Educational Assessment, 11(3–4), 205–235. doi:10.1080/10627197.2006.9652991.

    Google Scholar 

  • Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. doi:10.1080/09500690600708717.

    Article  Google Scholar 

  • Salden, R. J. C. M., Aleven, V., Schwonke, R., & Renkl, A. (2010). The expertise reversal effect and worked examples in tutored problem solving. Instructional Science, 38(3), 289–307. doi:10.1007/s11251-009-9107-8.

    Article  Google Scholar 

  • Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51. doi:10.1207/S15327809JLS1201_2.

    Article  Google Scholar 

  • Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77–96. doi:10.1007/BF02505026.

    Article  Google Scholar 

  • Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102. doi:10.1007/s11412-009-9080-x.

    Article  Google Scholar 

  • Schnotz, W. (2010). Reanalyzing the expertise reversal effect. Instructional Science, 38(3), 315–323. doi:10.1007/s11251-009-9104-y.

    Article  Google Scholar 

  • Schraw, G. (2001). Current themes and future directions in epistemological research: a commentary. Educational Psychology Review, 13(4), 451–464. doi:10.1023/A:1011922015665.

    Article  Google Scholar 

  • Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Simons, K. D., & Ertmer, P. A. (2006). Scaffolding disciplined inquiry in problem-based learning environments. International Journal of Learning, 12(6), 297–305.

    Google Scholar 

  • So, H.-J., Seah, L. H., & Toh-Heng, H. L. (2010). Designing collaborative knowledge building environments accessible to all learners: Impacts and design challenges. Computers & Education, 54(2), 479–490. doi:10.1016/j.compedu.2009.08.031.

    Article  Google Scholar 

  • Stake, R. E. (1978). The case study method in social inquiry. Educational Researcher, 7(2), 5–8. doi:10.3102/0013189X007002005.

    Article  Google Scholar 

  • Stanovich, K. E., & West, R. F. (2008). On the failure of cognitive ability to predict myside and one-sided thinking biases. Thinking & Reasoning, 14(2), 129–167. doi:10.1080/13546780701679764.

    Article  Google Scholar 

  • Tal, T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students’ performances. Cultural Studies of Science Education, 1(4), 615–644. doi:10.1007/s11422-006-9026-9.

    Article  Google Scholar 

  • U.S. Department of Health & Human Services. (2012). 2012 HHS poverty guidelines. Retrieved from http://aspe.hhs.gov/poverty/12poverty.shtml.

  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. doi:10.1007/s10648-010-9127-6.

    Article  Google Scholar 

  • Van Eemeren, F. H., Grootendorst, R., & Snoeck Henkemans, A. F. (2002). Argumentation: Analysis, evaluation, presentation. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. doi:10.1080/00461520.2011.611369.

    Article  Google Scholar 

  • Vellom, R. P., & Anderson, C. W. (1999). Reasoning about data in middle school science. Journal of Research in Science Teaching, 36(2), 179–199. doi:10.1002/(SICI)1098-2736(199902)36:2.

    Article  Google Scholar 

  • von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131. doi:10.1002/tea.20213.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387–1410. doi:10.1080/09500690601068095.

    Article  Google Scholar 

  • Webb, N. M., Nemer, K. M., & Zuniga, S. (2002). Short circuits or superconductors? Effects of group composition on high-achieving students’ science assessment performance. American Educational Research Journal, 39(4), 943–989. doi:10.3102/01623737017002239.

    Article  Google Scholar 

  • Weinstock, M., Neuman, Y., & Tabak, I. (2004). Missing the point or missing the norms? Epistemological norms as predictors of students’ ability to identify fallacious arguments. Contemporary Educational Psychology, 29(1), 77–94. doi:10.1016/S0361-476X(03)00024-9.

    Article  Google Scholar 

  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118. doi:10.1207/s1532690xci1601_2.

    Article  Google Scholar 

  • Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. doi:10.1006/ceps.1999.1015.

    Article  Google Scholar 

  • Wilson, S. M. (2013). Professional development for science teachers. Science, 340(6130), 310–313. doi:10.1126/science.1230725.

    Article  Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Yoon, S. A. (2011). Using social network graphs as visualization tools to influence peer selection decision-making strategies to access information about complex socioscientific issues. Journal of the Learning Sciences, 20(4), 549–588. doi:10.1080/10508406.2011.563655.

    Article  Google Scholar 

  • Young, M. F., DePalma, A., & Garrett, S. (2002). Situations, interaction, process and affordances: An ecological psychology perspective. Instructional Science, 30(1), 47–63. doi:10.1023/A:1013537432164.

    Article  Google Scholar 

  • Zhang, B., Liu, X., & Krajcik, J. S. (2006). Expert models and modeling processes associated with a computer-modeling tool. Science Education, 90(4), 579–604. doi:10.1002/sce.20129.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Early CAREER Grant 0953046 from the National Science Foundation, awarded to the first author. Any opinions, findings, and/or conclusions are those of the authors and do not necessarily represent official positions of NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Belland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belland, B.R., Gu, J., Armbrust, S. et al. Scaffolding argumentation about water quality: a mixed-method study in a rural middle school. Education Tech Research Dev 63, 325–353 (2015). https://doi.org/10.1007/s11423-015-9373-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-015-9373-x

Keywords

Navigation