Skip to main content
Log in

Toward a framework on how affordances and motives can drive different uses of scaffolds: theory, evidence, and design implications

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

One way to help students engage in higher-order thinking is through scaffolding, which can be defined as support that allows students to participate meaningfully in and gain skill at a task that is beyond their unassisted abilities. Most research on computer-based scaffolds assesses the average impact of the tools on learning outcomes. This is problematic in that it assumes that computer-based scaffolds impact different students in the same way. In this conceptual paper, we use activity theory and the theory of affordances to build an initial theoretical framework on how and why K-12 students use computer-based scaffolds. Specifically, we argue that affordances and motives drive how and why K-12 students use computer-based scaffolds. Then we examine empirical studies to gather preliminary support for the framework. Implications for research on and the design of computer-based scaffolds are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, J. M. (2002). Smoothing the information seeking path: Removing representational obstacles in the middle-school digital library. (Dissertation). University of North Texas, Denton, TX. Retrieved May 29, 2010 from http://digital.library.unt.edu/ark:/67531/metadc3165/m1/1/.

  • Akhras, F. N., & Self, J. A. (2002). Beyond intelligent tutoring systems: Situations, interactions, processes and affordances. Instructional Science, 30(1), 1–30. doi:10.1023/A:1013544300305.

    Article  Google Scholar 

  • Angeli, C., Valanides, N., & Kirschner, P. (2009). Field dependence–independence and instructional-design effects on learners’ performance with a computer-modeling tool. Computers in Human Behavior, 25(6), 1355–1366. doi:10.1016/j.chb.2009.05.010.

    Article  Google Scholar 

  • Ary, D., Jacobs, L. C., & Razavieh, A. (2002). Introduction to research in education. Belmont, CA: Wadsworth.

    Google Scholar 

  • Bannan-Ritland, B. R., & Baek, J. Y. (2008). Investigating the act of design in design research: The road taken. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching (pp. 299–319). New York, NY: Routledge.

    Google Scholar 

  • Belland, B. R. (2008). Supporting middle school students’ construction of evidence-based arguments: Impact of and student interactions with computer-based argumentation scaffolds (Ph.D. Dissertation). Purdue University, West Lafayette, IN. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication No. 304502316).

  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments during problem-based learning: The impact of computer-based scaffolds. Educational Technology Research and Development, 58(3), 285–309. doi:10.1007/s11423-009-9139-4.

    Article  Google Scholar 

  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 505–518). New York, NY: Springer. doi:10.1007/978-1-4614-3185-5_39.

  • Belland, B. R., Glazewski, K. D., & Ertmer, P. A. (2009). Inclusion and problem-based learning: Roles of students in a mixed-ability group. Research on Middle Level Education, 32(9), 1–19.

    Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 56(4), 401–422. doi:10.1007/s11423-007-9074-1.

    Article  Google Scholar 

  • Belland, B. R., Kim, C., & Hannafin, M. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(4), 243–270. doi:10.1080/00461520.2013.838920.

  • Bloome, D., Carter, S. P., Christian, B. M., Otto, S., & Shuart-Faris, N. (2005). Discourse analysis and the study of classroom language and literacy events: A microethnographic perspective. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bourdieu, P. (1982). Ce que parler veut dire: l’économie des échanges linguistiques [Language and Symbolic Power]. Paris: Librairie Arthème Fayard.

    Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi:10.1002/sce.10001.

    Article  Google Scholar 

  • Clarebout, G., & Elen, J. (2006). Tool use in computer-based learning environments: Towards a research framework. Computers in Human Behavior, 22(3), 389–411. doi:10.1016/j.chb.2004.09.007.

    Article  Google Scholar 

  • Clarebout, G., & Elen, J. (2008). Advice on tool use in open learning environments. Journal of Educational Multimedia and Hypermedia, 17(1), 81–97.

    Google Scholar 

  • Collins, C. (2008). “Discourse” in cultural-historical perspective: Critical discourse analysis, CHAT, and the study of social change. In B. Oers, W. Wardekker, E. Elbers, & R. Van der Veer (Eds.), The transformation of learning: Advances in cultural-historical activity theory (pp. 242–272). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–121. doi:10.1207/S15327809JLS1101_4.

    Article  Google Scholar 

  • Eisner, E. (1992). Objectivity in educational research. Curriculum Inquiry, 22(1), 9–15.

    Article  Google Scholar 

  • Engeström, Y. (2009). The future of activity theory: A rough draft. In A. Sannino, H. Daniels, & K. D. Gutiérrez (Eds.), Learning and expanding with activity theory (pp. 303–328). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Faiola, A., & Matei, S. A. (2009). Enhancing human–computer interaction design education: Teaching affordance design for emerging mobile devices. International Journal of Technology and Design Education, 20(3), 239–254. doi:10.1007/s10798-008-9082-4.

    Article  Google Scholar 

  • Garfinkel, A. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Gibbs, A. (1997). Focus groups. Social Research Update, 19. Retrieved May 29, 2012 from http://sru.soc.surrey.ac.uk/SRU19.html.

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gick, M. L. (1986). Problem solving strategies. Educational Psychologist, 21(1&2), 99–120. doi:10.1080/00461520.1986.9653026.

    Article  Google Scholar 

  • Giesbers, B., Rienties, B., Tempelaar, D., & Gijselaers, W. (2013). Investigating the relations between motivation, tool use, participation, and performance in an e-learning course using web-videoconferencing. Computers in Human Behavior, 29(1), 285–292. doi:10.1016/j.chb.2012.09.005.

    Article  Google Scholar 

  • Gijlers, H., & de Jong, T. (2009). Sharing and confronting propositions in collaborative inquiry learning. Cognition and Instruction, 27(3), 239–268. doi:10.1080/07370000903014352.

    Article  Google Scholar 

  • Gijlers, H., Saab, N., Van Joolingen, W. R., de Jong, T., & Van Hout-Wolters, B. H. A. M. (2009). Interaction between tool and talk: How instruction and tools support consensus building in collaborative inquiry-learning environments. Journal of Computer Assisted Learning, 25(3), 252–267. doi:10.1111/j.1365-2729.2008.00302.x.

    Article  Google Scholar 

  • Graf, S., & Kinshuk. (2006). Considering learning styles in learning management systems: Investigating the behavior of students in an online course. In First international workshop on semantic media adaptation and personalization (pp. 25–30). Athens, Greece: IEEE. doi:10.1109/SMAP.2006.13.

  • Hannafin, M., Land, S., & Oliver, K. (1999). Open-ended learning environments: Foundations, methods, and models. In C. M. Reigeluth (Ed.), Instructional design theories and models (Vol. II, pp. 115–140)., A new paradigm of instructional theory Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Heinich, R. (1984). The proper study of instructional technology. Educational Communication and Technology Journal, 32(2), 67–88.

    Google Scholar 

  • Helson, H. (1933). The fundamental propositions of Gestalt psychology. Psychological Review, 40(1), 13–32. doi:10.1037/h0074375.

    Article  Google Scholar 

  • Hsiao, S.-W., Hsu, C.-F., & Lee, Y.-T. (2012). An online affordance evaluation model for product design. Design Studies, 33(2), 126–159. doi:10.1016/j.destud.2011.06.003.

    Article  Google Scholar 

  • Jiang, L., Elen, J., & Clarebout, G. (2009). The relationships between learner variables, tool-usage behaviour and performance. Computers in Human Behavior, 25(2), 501–509. doi:10.1016/j.chb.2008.11.006.

    Article  Google Scholar 

  • Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational Technology Research and Development, 39(3), 5–14. doi:10.1007/BF02296434.

    Article  Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85. doi:10.1007/BF02300500.

    Article  Google Scholar 

  • Jonassen, D. H., & Hernandez-Serrano, J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educational Technology Research and Development, 50(2), 65–77. doi:10.1007/BF02504994.

    Article  Google Scholar 

  • Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing constructivist learning environments. Educational Technology Research and Development, 47(1), 61–79. doi:10.1007/BF02299477.

    Article  Google Scholar 

  • Kim, M., & Hannafin, M. (2011). Scaffolding 6th graders’ problem solving in technology-enhanced science classrooms: A qualitative case study. Instructional Science, 39(3), 255–282. doi:10.1007/s11251-010-9127-4.

    Article  Google Scholar 

  • Kirschner, P. A. (2002). Can we support CSCL? Education, social, and technological affordances for learning. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 7–47). Heerlan, Netherlands: Open Universiteit Nederland.

    Google Scholar 

  • Kirschner, P. A., Strijbos, J.-W., Kreijns, K., & Beers, P. (2004). Designing electronic collaborative learning environments. Educational Technology Research and Development, 52(3), 47–66. doi:10.1007/BF02504675.

    Article  Google Scholar 

  • Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277–311. doi:10.1080/07370000903221718.

    Article  Google Scholar 

  • Lather, P. (2012). The ruins of neo-liberalism and the construction of a new (scientific) subjectivity. Cultural Studies of Science Education, 7(4), 1021–1025. doi:10.1007/s11422-012-9465-4.

    Article  Google Scholar 

  • Leont’ev, A. N. (1974). The problem of activity in psychology. Soviet Psychology, 13(2), 4–33.

    Google Scholar 

  • Leont’ev, A. N. (2009). Activity and consciousness. Pacifica, CA: Marxists Internet Archive. Retrieved September 26, 2010 from http://www.marxists.org/archive/leontev/works/activity-consciousness.pdf.

  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517–538. doi:10.1002/sce.10086.

    Article  Google Scholar 

  • Lunenfeld, P. (1999). Introduction: Screen grabs: The digital dialectic and new media theory. In P. Lunenfeld (Ed.), The digital dialectic: New essays on new media (pp. 14–21). Cambridge, MA: MIT Press.

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. In M. Lopez-Morillas & Solotaroff, Trans., M. Cole (Eds.). Cambridge, MA: Harvard University Press.

  • Manlove, S., Lazonder, A. W., & de Jong, T. (2009). Collaborative versus individual use of regulative software scaffolds during scientific inquiry learning. Interactive Learning Environments, 17(2), 105–117. doi:10.1080/10494820701706437.

    Article  Google Scholar 

  • Norman, D. A. (1988). The psychology of everyday things. New York, NY: Basic Books.

    Google Scholar 

  • Osiurak, F., Jarry, C., & Le Gall, D. (2010). Grasping the affordances, understanding the reasoning: Toward a dialectical theory of human tool use. Psychological Review, 117(2), 517–540. doi:10.1037/a0019004.

    Article  Google Scholar 

  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of Educational Psychology, 92(3), 544–555. doi:10.1037/0022-0663.92.3.544.

    Article  Google Scholar 

  • Pols, A. J. K. (2012). Characterising affordances: The descriptions-of-affordances-model. Design Studies, 33(2), 113–125. doi:10.1016/j.destud.2011.07.007.

    Article  Google Scholar 

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. doi:10.1207/s15327809jls1303_2.

    Article  Google Scholar 

  • Rojas-Drummond, S., Gómez, L., & Vélez, M. (2008). Dialogue for reasoning: Promoting exploratory talk and problem solving in the primary classroom. In B. Van Oers, W. Wardekker, E. Elbers, & R. Van der Veer (Eds.), The transformation of learning: Advances in cultural historical activity theory (pp. 319–341). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Roth, W. (2012). Science of learning is learning of science: why we need a dialectical approach to science education research. Cultural Studies of Science Education, 7(2), 255–277. doi:10.1007/s11422-012-9390-6.

    Article  Google Scholar 

  • Roth, W., & Lee, Y. (2007). “Vygotsky’s Neglected Legacy”: Cultural-historical activity theory. Review of Educational Research, 77(2), 186–232. doi:10.3102/0034654306298273.

    Article  Google Scholar 

  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345–372. doi:10.1002/sce.10130.

    Article  Google Scholar 

  • Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77–96. doi:10.1007/BF02505026.

    Article  Google Scholar 

  • Scarantino, A. (2003). Affordances explained. Philosophy of Science, 70(5), 949–961. doi:10.1086/377380.

    Article  Google Scholar 

  • Simons, J., Dewitte, S., & Lens, W. (2004). The role of different types of instrumentality in motivation, study strategies, and performance: Know why you learn, so you’ll know what you learn! British Journal of Educational Psychology, 74(3), 343–360. doi:10.1348/0007099041552314.

    Article  Google Scholar 

  • Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94(1), 29–47. doi:10.1002/sce.20366.

    Google Scholar 

  • Ten Have, P. (1999). Doing conversation analysis: A practical guide. London, UK: Sage.

    Google Scholar 

  • Thiagarajan, S. (2002). Faster, cheaper, better. Retrieved May 29, 2012 from http://www.thiagi.com/article-faster-cheaper-better.html.

  • Veermans, M., & Tapola, A. (2004). Primary school students’ motivational profiles in longitudinal settings. Scandinavian Journal of Educational Research, 48(4), 373–395. doi:10.1080/0031383042000245780.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wagman, J. B., & Carello, C. (2001). Affordances and inertial constraints on tool use. Ecological Psychology, 13(3), 173–195. doi:10.1207/S15326969ECO1303_1.

    Article  Google Scholar 

  • Weisburg, R. W. (1993). Creativity: Beyond the myth of genius. New York, NY: W. H. Freeman.

    Google Scholar 

  • Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Young, M. F., DePalma, A., & Garrett, S. (2002). Situations, interaction, process and affordances: An ecological psychology perspective. Instructional Science, 30(1), 47–63. doi:10.1023/A:1013537432164.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by early CAREER Grant # DRL-0953046 from the National Science Foundation. The views expressed herein are those of the authors and do not necessarily represent those of NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Belland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belland, B.R., Drake, J. Toward a framework on how affordances and motives can drive different uses of scaffolds: theory, evidence, and design implications. Education Tech Research Dev 61, 903–925 (2013). https://doi.org/10.1007/s11423-013-9313-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-013-9313-6

Keywords

Navigation