Skip to main content
Log in

New potent accelerator of neurite outgrowth from Lawsonia inermis flower under non-fasting condition

  • Original Paper
  • Biologically Active Natural Products from Microorganisms and Plants
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The methanolic extract of Lawsonia inermis L. (henna) showed accelerative effects on nerve growth factor-induced neurite outgrowth in PC12 cells under non-fasting conditions. To elucidate the active constituents responsible for the neuronal differentiation, we conducted a search of the constituents and examined their accelerative effects on neurite outgrowth in PC12 cells. We isolated a new acetophenone glycoside, inermioside A, which exerted a significant accelerative effect on neurite outgrowth. We also confirmed the activities of nine known compounds, including quercetin and lalioside. In addition, we found that quercetin, one of the active constituents, increased Vav3 mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Rubiay KK, Jaber NN, Al-Mhaawe BH, Alrubaiy LK (2008) Antimicrobial efficacy of henna extracts. Oman Med J 23:253–256

    PubMed  PubMed Central  Google Scholar 

  2. Saadabi MAA (2007) Evaluation of Lawsonia inermis Linn. (Sudanese Henna) leaf extracts as an antimicrobial agent. Res J Biol Sci 2:419–423

    Google Scholar 

  3. Zumrutdal EM, Ozaslan M, Tuzcu M, Kalender EM, Daglύoglu K, Akoval A, Karagöz DI, Kilic Hİ, Colak O, Köksal F (2008) Effect of Lawsonia inermis treatment on mice with sarcoma. Afr J Biotechnol 7:2781–2786

    Google Scholar 

  4. Sharma VK (1990) Tuberculostatic activity of henna (Lawsonia inermis Linn.). Tuber 71:293–295

    Article  CAS  Google Scholar 

  5. Tripathi DR, Srivastava SH, Dixit NS (1978) A fungitoxic principle from the leaves of Lawsonia inermis Lam. Experientia 34:51–52

    Article  CAS  PubMed  Google Scholar 

  6. Nakashima S, Oda Y, Nakamura S, Liu J, Onishi K, Kawabata M, Miki H, Himuro Y, Yoshikawa M, Matsuda H (2015) Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorg Med Chem Lett 25:2701–2706

    Google Scholar 

  7. Nakashima S, Matsuda H (2013) Inhibitory effect of flower of Lawsonia inermis on AGEs production and its cell protective effect under glycated conditions. Fragr J 41:68–71

    CAS  Google Scholar 

  8. Greene AL, Tischler SA (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bork K, Wurm F, Haller H, Strauss C, Scheller C, Gnanapragassam SV, Horstkorte R (2015) Neuroprotective and neuroregenerative effects of nimodipine in a model system of neuronal differentiation and neurite outgrowth. Molecules 20:1003–1013

    Article  PubMed  Google Scholar 

  10. Sierra-Fonseca AJ, Najera O, Martinez-Jurado J, Walker ME, Varela-Ramirez A, Khan MA, Miranda M, Lamango SN, Roychowdhury S (2014) Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci 15:132–150

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gunning WP, Landreth EG, Layer P, Ignatius M, Shooter ME (1981) Nerve growth factor-induced differentiation of PC12 cells: evaluation of changes in RNA and DNA metabolism. J Neurosci 1:368–379

    CAS  PubMed  Google Scholar 

  12. Chen PY, Wu MJ, Chang HY, Tai MH, Ho CT, Yen JH (2015) Up-regulation of miR-34a expression in response to the luteolin-induced neurite outgrowth of PC12 cells. J Agric Food Chem 63:4148–4159

    Article  CAS  PubMed  Google Scholar 

  13. Kudo T, Kanetaka H, Shimizu Y, Abe T, Mori H, Mori K, Suzuki E, Takagi T, Izumi S (2013) Induction of neuritogenesis in PC12 cells by a pulsed electromagnetic field via MEK-ERK1/2 signaling. Cell Struct Funct 38:15–20

    Article  CAS  PubMed  Google Scholar 

  14. Oda T, Kume T, Katsuki H, Niidome T, Sugimoto H, Akaike A (2007) Donepezil potentiates nerve growth factor-induced neurite outgrowth in PC12 cells. J Pharmacol Sci 104:349–354

    Article  CAS  PubMed  Google Scholar 

  15. Aoki K, Nakamura T, Fujikawa K, Matsuda M (2005) Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells. Mol Biol Cell 16:2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakajima K, Niisato N, Marunaka Y (2011) Quercetin stimulates NGF-induced neurite outgrowth in PC12 cells via activation of Na+/K+/2Cl cotransporter. Cell Physiol Biochem 28:147–156

    Article  CAS  PubMed  Google Scholar 

  17. Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Grande DP, Ninfali P (2015) Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol. Food Funct 6:394–400

    Article  CAS  PubMed  Google Scholar 

  18. Takeda Y, Fatope OM (1988) New phenolic glucosides from Lawsonia inermis. J Nat Prod 51:725–729

    Article  CAS  PubMed  Google Scholar 

  19. Lee KR, Hong SW, Kwak JH, Pyo S, Jee OP (1996) Phenolic constituents from the aerial parts of Artemisia stolonifera. Arch Pharm Res 19:231–234

    Article  CAS  Google Scholar 

  20. Yoshizaki M, Fujino H, Arise A, Ohmura K, Arisawa M, Morita N (1987) Polygoacetophenoside, a new acetophenone glucoside from Polygonum multiflorum. Planta Med 53:273–275

    Article  CAS  PubMed  Google Scholar 

  21. Slimestad R, Andersen MØ, Francis WG, Marston A, Hostettmann K (1995) Syringetin 3-O-(6″-acetyl)-β-glucopyranoside and other flavonols from needles of norway spruce, Picea abies. Phytochemistry 40:1537–1542

    Article  CAS  Google Scholar 

  22. Kellam JS, Mitchell AK, Blunt WJ, Munro HGM, Walker RLJ (1993) Luteolin and 6-hydroxyluteolin glycosides from Hebe stricta. Phytochemistry 33:867–869

    Article  CAS  Google Scholar 

  23. Obara H, Onodera J, Kurihara Y, Yamamoto F (1978) Synthesis of 2′,3′,4,4′,6′-pentahydroxychalcone, an aglycone of carthamin, and its isomerization into 4′,5,6,7- and 4′,5,7,8-tetrahydroxyflavanone, carthamidin and isocarthamidin. Bull Chem Soc Jpn 51:3627–3630

    Article  CAS  Google Scholar 

  24. Obara H, Onodera J, Abe S (1979) The synthesis of 3′-methoxy-2′,4,4′,6′- and 2′-methoxy-3′,4,4′,6′-tetrahydroxychalcone and some quinochalcones and a comparison of them with carthamin. Bull Chem Soc Jpn 52:2596–2599

    Article  CAS  Google Scholar 

  25. Iinuma M, Tanaka T, Iwashima K, Matsuura S (1984) Synthesis of flavones by the use of isopropyl as a protective group. Yakugaku Zasshi 104:691–694

    CAS  Google Scholar 

  26. Adams JC, Main L (1991) Synthesis of 2′-hydroxychalcone epoxides. Tetrahedron 47:4959–4978

    Article  CAS  Google Scholar 

  27. Brown DG (1992) Two new compounds from Artemisia annua. J Nat Prod 55:1756–1760

    Article  CAS  Google Scholar 

  28. Deodhar M, Black SD, Kumar N (2007) Acid catalyzed stereoselective rearrangement and dimerization of flavenes: synthesis of dependensin. Tetrahedron 63:5227–5235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souichi Nakashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, Y., Nakashima, S., Nakamura, S. et al. New potent accelerator of neurite outgrowth from Lawsonia inermis flower under non-fasting condition. J Nat Med 70, 384–390 (2016). https://doi.org/10.1007/s11418-016-0974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-0974-4

Keywords

Navigation