Skip to main content
Log in

Promotion of neurite outgrowth by 3,5,7,3ʹ,4ʹ-pentamethoxyflavone is mediated through ERK signaling pathway in Neuro2a cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

In this study, the effects of 3,5,7,3ʹ,4ʹ-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III β-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3β (GSK-3β). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3β inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Read DE, Gorman AM (2009) Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 60:2975–2984. https://doi.org/10.1007/s00018-009-0057-8

    Article  CAS  Google Scholar 

  2. Da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704. https://doi.org/10.1038/nrn918

    Article  CAS  PubMed  Google Scholar 

  3. Tang BL (2001) Protein trafficking mechanisms associated with neurite outgrowth and polarized sorting in neurons. J Neurochem 79:923–930. https://doi.org/10.1046/j.1471-4159.2001.00674.x

    Article  CAS  PubMed  Google Scholar 

  4. Zhou FQ, Snider WD (2006) Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc B 361:1575–1592. https://doi.org/10.1098/rstb.2006.1882

    Article  CAS  Google Scholar 

  5. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398. https://doi.org/10.1038/nrd1719

    Article  CAS  PubMed  Google Scholar 

  6. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B 361:1545–1564. https://doi.org/10.1098/rstb.2006.1894

    Article  CAS  Google Scholar 

  7. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bromberg KD, Iyengar R, He JC (2008) Regulation of neurite outgrowth by Gi/0 signaling pathway. Front Biosci 13:4544–4557. https://doi.org/10.2741/3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205. https://doi.org/10.1038/nrn2056

    Article  CAS  PubMed  Google Scholar 

  10. Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann NY Acad Sci 1014:140–154. https://doi.org/10.1196/annals.1294.015

    Article  CAS  PubMed  Google Scholar 

  11. Missaire M, Hindges R (2015) The role of cell adhesion molecules in visual circuit formation: From neurite outgrowth to maps and synaptic specificity. Dev Neurobiol 75:569–583. https://doi.org/10.1002/dneu.22267

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tohda C, Kuboyama T, Komatsu K (2005) Search for natural products related to regeneration of the neuronal network. Neurosignals 14:34–45. https://doi.org/10.1159/000085384

    Article  CAS  PubMed  Google Scholar 

  13. More SV, Koppular S, Kim IS, Kumar H, Kim BW, Choi DK (2012) The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 17:6728–6753. https://doi.org/10.3390/molecules17066728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. An J, Chen B, Tian D, Guo Y, Yan Y, Yang H (2022) Regulation of neurogenesis and neuronal differentiation by natural compounds. Curr Stem Cell Res Ther 17:756–771. https://doi.org/10.2174/1574888X16666210907141447

    Article  CAS  PubMed  Google Scholar 

  15. Fukuyama Y, Kubo M, Harada K (2020) The search for, and chemistry and mechanism of, neurotrophic natural products. J Nat Med 74:648–671. https://doi.org/10.1007/s11418-020-01431-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J (2021) Neuropharmacological effects of quercetin: a literature-based review. Front Pharmacol 12:665031. https://doi.org/10.3389/fphar.2021.665031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reznichenko L, Amit T, Youdim MB, Mandel S (2005) Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93:1157–1167. https://doi.org/10.1111/j.1471-4159.2005.03085.x

    Article  CAS  PubMed  Google Scholar 

  18. Gao XQ, Yang CX, Chen GJ, Wang GY, Chen B, Tan SK, Liu J, Yuan QL (2010) Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol 132:393–399. https://doi.org/10.1016/j.jep.2010.07.033

    Article  CAS  PubMed  Google Scholar 

  19. Lejri I, Grimm A, Eckert A (2019) Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway. PLoS ONE 14:e0225761. https://doi.org/10.1371/journal.pone.0225761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765. https://doi.org/10.1248/cpb.50.760

    Article  CAS  Google Scholar 

  21. Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by Withanolide A. Br J Pharmacol 144:961–971. https://doi.org/10.1038/sj.bjp.0706122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao KK, Wu MJ, Chen PY, Huang SW, Chiu SJ, Ho CT, Yen JH (2012) Curcuminoids promote neurite outgrowth in PC12 Cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem 60:433–443. https://doi.org/10.1021/jf203290r

    Article  CAS  PubMed  Google Scholar 

  23. Park SJ, Jin ML, An HK, Kim KS, Ko MJ, Kim CM, Choi YW, Lee YC (2015) Emodin induces neurite outgrowth through PI3K/Akt/GSK-3β-mediated signaling pathways in Neuro2a cells. Neurosci Lett 588:101–107. https://doi.org/10.1016/j.neulet.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  24. Seo SH, Lee YC, Moon HI (2017) Acetyl-cholinesterase inhibitory activity of methoxyflavones isolated from Kaempferia parviflora. Nat Prod Commun 12:21–22

    PubMed  Google Scholar 

  25. Yanaka N, Nogusa Y, Fujioka Y, Yamashita Y, Kato N (2007) Involvement of membrane protein GDE2 in retinoic acid-induced neurite formation in Neuro2A cells. FEBS Lett 581:712–718. https://doi.org/10.1016/j.febslet.2007.01.035

    Article  CAS  PubMed  Google Scholar 

  26. Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 186:60–67. https://doi.org/10.1016/j.jneumeth.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, Chu D, Sun SH (2009) Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cellular Signal 21:881–891. https://doi.org/10.1016/j.cellsig.2009.01.036

    Article  CAS  Google Scholar 

  28. Wang Z, Wang J, Li J, Wang X, Yao Y, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z (2011) MEK/ERKs signaling is essential for lithium-induced neurite outgrowth in N2a cells. Int J Dev Neurosci 29:415–422. https://doi.org/10.1016/j.ijdevneu.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  29. Lee JW, Kim KS, An HK, Kim CH, Moon HI, Lee YC (2013) Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosar- coma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis. PLoS ONE 8:e83611. https://doi.org/10.1371/journal.pone.0083611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YM, Sim YC, Shin Y, Kwon YK (2014) Aucubin promotes neurite outgrowth in neural stem cells and axonal regeneration in sciatic nerves. Exp Neorobiol 23:238–245. https://doi.org/10.5607/en.2014.23.3.238

    Article  Google Scholar 

  31. Evangelopoulos ME, Weis J, Krüttgen A (2009) Mevastatin-induced neurite outgrowth of neuroblastoma cells via activation of EGFR. J Neurosci Res 87:2138–2144. https://doi.org/10.1002/jnr.22025

    Article  CAS  PubMed  Google Scholar 

  32. Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576. https://doi.org/10.1007/s00018-014-1815-9

    Article  CAS  PubMed  Google Scholar 

  33. Calderón FH, Bonnefont A, Muñoz FZ, Fernández V, Videla LA, Inestrosa NC (1999) PC12 and neuro 2a cells have different susceptibilities to acetylcholinesterase-amyloid complexes, amyloid25-35 fragment, glutamate, and hydrogen peroxide. J Neurosci Res 56:620–631. https://doi.org/10.1002/(SICI)1097-4547(19990615)56:6%3c620::AID-JNR8%3e3.0.CO;2-F

    Article  PubMed  Google Scholar 

  34. López-Maderuelo MD, Fernández-Renart M, Moratilla C, Renart J (2001) Opposite effects of the Hsp90 inhibitor Geldanamycin: induction of apoptosis in PC12, and differentiation in N2A cells. FEBS Lett 490:23–27. https://doi.org/10.1016/s0014-5793(01)02130-5

    Article  PubMed  Google Scholar 

  35. Ma’ayan A, Jenkins SL, Barash A, Iyengar R (2009) Neuro2A differentiation by Gi/o pathway. Sci Signal. https://doi.org/10.1126/scisignal.254cm1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peng W, Mo X, Li L, Lu T, Hu Z (2020) PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells. J Mol Histol 51:307–315. https://doi.org/10.1007/s10735-020-09881-w

    Article  CAS  PubMed  Google Scholar 

  37. Qiao S, Yang D, Li X, Li W, Zhang Y, Liu W (2021) Silencing PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced neuronal apoptosis via activation of PI3K/AKT signaling in PC12 cells. Life Sci. https://doi.org/10.1016/j.lfs.2020.118806

    Article  PubMed  Google Scholar 

  38. Li P, Matsunaga K, Yamakuni T, Ohizumi Y (2002) Picrosides I and II, selective enhancers of the mitogen-activated protein kinase-dependent signaling pathway in the action of neuritogenic substances on PC12D cells. Life Sci 71:1821–1835. https://doi.org/10.1016/s0024-3205(02)01949-5

    Article  CAS  PubMed  Google Scholar 

  39. Li P, Yamakuni Y, Matsunaga K, Kondo S, Ohizumi Y (2003) Nardosinone enhanced neurite outgrowth-inducing action of NGF by activating the signaling pathway via mitogen-activated protein (MAP) kinase and protein kinase C (PKC). J Pharmacol Sci 93:122–125. https://doi.org/10.1254/jphs.93.122

    Article  CAS  PubMed  Google Scholar 

  40. Yamazaki M, Chiba K (2008) Genipin exhibits neurotrophic effects through a common signaling pathway in nitric oxide synthase-expressing cells. Eur J Pharmacol 58:255–261. https://doi.org/10.1016/j.ejphar.2007.12.001

    Article  CAS  Google Scholar 

  41. Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z (2011) Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. Biochim Biophys Acta 1813:827–838. https://doi.org/10.1016/j.bbamcr.2011.01.027

    Article  CAS  PubMed  Google Scholar 

  42. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hyung-In Moon (SKEDERM Cosmetic R&D Center, Seoul, Republic of Korea) for providing the detailed methods on extraction and purification of KP1 from Kaempferia parviflora rhizomes. This work was supported by the Dong-A University research fund.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Shin-Ji Park, So-Young An, Kyoung Sook Kim, Jong Hyun Cho, Young-Choon. Performed the experiments: Shin-Ji Park, So-Young An, Yeon Jin An. Analyzed the data: Shin-Ji Park, So-Young An, Yeon Jin An, Kyoung Sook Kim, Jong Hyun Cho, Young-Choon. Contributed reagents/materials/analysis tools: Kyoung Sook Kim, Hyun-Ju Kim, Jong Hyun Cho. Wrote the paper: Shin-Ji Park, So-Young An, Jong Hyun Cho, Young-Choon Lee.

Corresponding authors

Correspondence to Jong Hyun Cho or Young-Choon Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SJ., An, SY., An, Y.J. et al. Promotion of neurite outgrowth by 3,5,7,3ʹ,4ʹ-pentamethoxyflavone is mediated through ERK signaling pathway in Neuro2a cells. J Nat Med 78, 599–607 (2024). https://doi.org/10.1007/s11418-024-01809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-024-01809-y

Keywords

Navigation