Skip to main content
Log in

Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The present work describes the protective effects of thymol isolated from Thymus quinquecostatus Celak. against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage through various experiments with Chang liver cells. Thymol significantly protected hepatocytes against t-BHP-induced cell cytotoxicity as demonstrated by increased viability. Furthermore, observation of Hoechst staining, annexin V/PI staining, and expression of Bcl-2 and Bax indicated that thymol inhibited t-BHP-induced Chang cell damage. Further, thymol inhibited the loss of mitochondrial membrane potential in t-BHP-treated Chang cells and prevented oxidative stress-triggered reactive oxygen species (ROS) and lipid peroxidation (malondialdehyde, MDA). Thymol restored the antioxidant capability of hepatocytes including glutathione (GSH) levels which were reduced by t-BHP. These results indicated that thymol prevents oxidative stress-induced damage to liver cells through suppression of ROS and MDA levels and increase of GSH level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deb DD, Parimala G, Devi SS, Chakraborty T (2011) Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact 193:97–106

    Article  PubMed  Google Scholar 

  2. Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21:33–42

    Article  CAS  Google Scholar 

  3. Beuchat LR (1976) Sensitivity of Vibrio parahaemolyticus to spices and organic acids. J Food Sci 41:899–902

    Article  CAS  Google Scholar 

  4. Guggenheim S, Shapiro S (1995) The action of thymol on oral bacteria. Oral Microbiol Immun 10:241–246

    Article  Google Scholar 

  5. Tsai ML, Lin CC, Lin WC, Yang CH (2011) Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem 75:1977–1983

    Article  PubMed  CAS  Google Scholar 

  6. Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L (2009) Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and resistant Candida albicans. J Med Microbiol 58:1074–1079

    Article  PubMed  CAS  Google Scholar 

  7. Sokovic M, Glamoclija J, Ciric A, Kataranovski D, Marin PD, Vukojevic J, Brkic D (2008) Antifungal activity of the essential oil of Thymus vulgaris L. and Thymol on experimentally induced dermatomycoses. Drug Dev Ind Pharm 34:1388–1393

    Article  PubMed  CAS  Google Scholar 

  8. Braga PC, Sasso MD, Culici M, Galastri L, Marceca MT, Guffanti EE (2006) Antioxidant potential of thymol determined by chemiluminescence inhibition in human neutrophils and cell-free systems. Pharmacology 76:61–68

    Article  PubMed  CAS  Google Scholar 

  9. Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    Article  CAS  Google Scholar 

  10. Ündegĕr Ü, Başaran A, Degen GH, Basaran N (2009) Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem Toxicol 47:2037–2043

    Article  PubMed  Google Scholar 

  11. Kim YS, Lee SJ, Hwang JW, Kim EK, Kim SE, Kim EH, Moon SH, Jeon BT, Park PJ (2012) In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food Chem Toxicol 50:4191–4198

    Article  PubMed  CAS  Google Scholar 

  12. Marchetti MA, Lee W, Cowell TL, Wells TM, Weissbach H, Kantorow M (2006) Silencing of the methionine sulfoxide reductase A gene results in loss of mitochondrial membrane potential and increased ROS production in human lens cells. Exp Eye Res 83:1281–1286

    Article  PubMed  CAS  Google Scholar 

  13. Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radical Bio Med 34:434–442

    Article  CAS  Google Scholar 

  14. Hu F, Yang S, Zhao D, Zhu S, Wang Y, Li J (2012) Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes. Biochem Bioph Res Co 424:196–200

    Article  CAS  Google Scholar 

  15. Park EJ, Choi KS, Kwon TK (2011) β-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chem-Biol Interact 189:37–44

    Article  PubMed  CAS  Google Scholar 

  16. Liang Q, Sheng Y, Jiang P, Ji L, Xia Y, Min Y, Wang Z (2011) The gender-dependent difference of liver GSH antioxidant system in mice and its influence on isoline-induced liver injury. Toxicology 280:61–69

    Article  PubMed  CAS  Google Scholar 

  17. DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharm Thera 52:287–305

    Article  CAS  Google Scholar 

  18. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong JS, Whiteman M, Yang H, Jones DP, Sternberg P Jr (2004) Cysteine starvation activates the redox dependent mitochondrial transition in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:4183–4189

    Article  PubMed  Google Scholar 

  20. Tiwari M, Kakkar P (2009) Plant derived antioxidants—geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol In Vitro 23:295–301

    Article  PubMed  CAS  Google Scholar 

  21. Kim EK, Je JY, Lee SJ, Kim YS, Hwang JW, Sung SH, Moon SH, Jeon BT, Kim SK, Jeon YJ, Park PJ (2012) Chitooligosaccharides induce apoptosis in human myeloid leukemia HL-60 cells. Bioorg Med Chem Lett 22:6136–6138

    Article  PubMed  CAS  Google Scholar 

  22. Satoh T, Enokido Y, Aoshima H, Uchiyama Y, Hatanaka H (1997) Changes in mitochondrial membrane potential during oxidative stress-Induced apoptosis in PC12 cells. J Neurosci Res 50:413–420

    Article  PubMed  CAS  Google Scholar 

  23. Senevirathne M, Ahn CB, Je JY (2011) Hepatoprotective effect of chitooligosaccharides against tert-butylhydroperoxide-induced damage in Chang liver cells. Carbohyd Polym 83:995–1000

    Article  CAS  Google Scholar 

  24. Kamal AA, Gomaa A, el Khafif M, Hammad AS (1989) Plasma lipid peroxides among workers exposed to silica or asbestos dusts. Environ Res 49:173–180

    Article  PubMed  CAS  Google Scholar 

  25. Wang L, Xu ML, Hu JH, Rasmussen SK, Wang MH (2011) Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells—involvement of ROS generation and polyamine depletion. Food Chem Toxicol 49:149–154

    Article  PubMed  CAS  Google Scholar 

  26. Rello S, Stockert JC, Moreno V, Gámez A, Pacheco M, Juarranz A, Cañete M, Villanueva A (2005) Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis 10:201–208

    Article  PubMed  CAS  Google Scholar 

  27. Mao QQ, Xian YF, Ip SP, Tsai SH, Che CT (2011) Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action. J Ethnopharmacol 133:1121–1125

    Article  PubMed  CAS  Google Scholar 

  28. Azizan A, Blevins RD (1995) Mutagenicity and antimutagenicity testing of six chemicals associated with the pungent properties of spices as revealed by Ames Salmonella/microsomal assay. Arch Environ Con Tox 28:248–258

    CAS  Google Scholar 

  29. Zani F, Massimo G, Benvenuti S, Bianchi A, Albasini A, Melegari M, Vampa G, Bellotti A, Mazza P (1991) Studies on the genotoxic properties of essential oils with Bacillus subtilis rec-assay and Salmonella/microsome reversion assay. Planta Med 57:237–241

    Article  PubMed  CAS  Google Scholar 

  30. Beer AM, Lukanov J, Sagorchev P (2007) Effect of Thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine 14:65–69

    Article  PubMed  CAS  Google Scholar 

  31. Peixoto-Neves D, Silva-Alves KS, Gomes MD, Lima FC, Lahlou S, Magalhães PJ, Ceccatto VM, Coelho-de-Souza AN, Leal-Cardoso JH (2010) Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fund Clin Pharmacol 24:341–350

    Article  CAS  Google Scholar 

  32. Lee SP, Buber MT, Yang Q, Ceme R, Cortés RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Brit J Pharmacol 153:1739–1749

    Article  CAS  Google Scholar 

  33. Hsu SS, Lin KL, Chou CT, Chiang AJ, Liang WZ, Chang HT, Tsai JY, Liao WC, Huang FD, Huang JK, Chen IS, Liu SI, Kuo CC, Jan CR (2011) Effect of thymol on Ca2+ homeostasis and viability in human glioblastoma cells. Eur J Pharmacol 670:85–91

    Article  PubMed  CAS  Google Scholar 

  34. Archana PR, Nageshwar Rao B, Ballal M, Satish Rao BS (2009) Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity. Mutat Res 680:70–77

    Article  PubMed  CAS  Google Scholar 

  35. Waliwitiya R, Belton P, Nicholson RA, Lowenberger CA (2010) Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata. Pest Manag Sci 66:277–289

    Article  PubMed  CAS  Google Scholar 

  36. Mahmud H, Mauro D, Foller M, Lang F (2009) Inhibitory effect of thymol on suicidal erythrocyte death. Cell Physiol Biochem 24:407–414

    Article  PubMed  CAS  Google Scholar 

  37. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy inflammation-cell death axis in organismal aging. Science 333:1109–1112

    Article  PubMed  CAS  Google Scholar 

  38. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  39. Kim YH, Hong JR, Gil HW, Song HY, Hong SY (2013) Mixtures of glyphosate and surfactant TN20 accelerate cell death via mitochondrial damage-induced apoptosis and necrosis. Toxicol In Vitro 27:191–197

    Article  PubMed  CAS  Google Scholar 

  40. Li G, Ye Y, Kang J, Yao X, Zhang Y, Jiang W, Gao M, Dai Y, Xin Y, Wang Q, Yin Z, Luo L (2012) L-Theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes. Food Chem Toxicol 50:363–372

    Article  PubMed  CAS  Google Scholar 

  41. Liu S, Hou W, Yao P, Zhang B, Sun S, Nüssler AK, Liu L (2010) Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 24:516–522

    Article  PubMed  CAS  Google Scholar 

  42. Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Bio Med 49:503–515

    Article  CAS  Google Scholar 

  43. Wu DM, Zhai QW, Shi XL (2006) Alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol 21:S26–S29

    Article  PubMed  CAS  Google Scholar 

  44. Wu YF, Fan YM, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–5800

    Article  PubMed  CAS  Google Scholar 

  45. Poot M, Teubert H, Rabinovitch PS, Kavanagh TJ (1995) De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. J Cell Physiol 163:555–560

    Article  PubMed  CAS  Google Scholar 

  46. Schnelldorfer T, Gansauge S, Gansauge F, Schlosser S, Beger HG, Nussler AK (2000) Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer 89:1440–1447

    Article  PubMed  CAS  Google Scholar 

  47. Lauterburg BH (2002) Analgesics and glutathione. Am J Ther 9:225–233

    Article  PubMed  Google Scholar 

  48. Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8:455–464

    Article  PubMed  CAS  Google Scholar 

  49. Park WH, Han YW, Kim SH, Kim SZ (2007) A superoxide anion generator, pyrogallol induces apoptosis in As4.1 cells through the depletion of intracellular GSH content. Mutat Res 619:81–92

    Article  PubMed  CAS  Google Scholar 

  50. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Bio Med 46:443–453

    Article  CAS  Google Scholar 

  51. May JM, Qu ZC, Whitesell RR, Cobb CE (1996) Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Bio Med 20:543–551

    Article  CAS  Google Scholar 

  52. Anderson MF, Nilsson M, Eriksson PS, Sims NR (2004) Glutathione monoethyl ester provides neuroprotection in a rat model of stroke. Neurosci Lett 354:163–165

    Article  PubMed  CAS  Google Scholar 

  53. Habib GM, Shi ZZ, Lieberman MW (2007) Glutathione protects cells against arsenite-induced toxicity. Free Radic Bio Med 42:191–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ009430)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyo-Jam Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YS., Hwang, JW., Kang, SH. et al. Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. J Nat Med 68, 154–162 (2014). https://doi.org/10.1007/s11418-013-0786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-013-0786-8

Keywords

Navigation