Skip to main content
Log in

Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

We have proved that the plant of origin of “Yakatsu”, one of the ancient medicines stored in Shosoin Repository, is Gelsemium elegans (Loganiaceae). Exhaustive investigation of the alkaloids in this plant as well as its closely related plant, G. sempervirens, resulted in the isolation of more than 50 compounds, including new gelsedine-, sarpagine-, and yohimbane-type alkaloids. Pharmacological study of representative and new Gelsemium alkaloids revealed that the gelsedine-type alkaloids exhibit potent cytotoxic activity against the A431 human epidermoid carcinoma cell line. It was found that Ophiorrhiza pumila (Rubiaceae) produces a remarkable anti-tumor alkaloid, camptothecin, and its related alkaloids, including new compounds that might be the biogenetic precursors of camptothecin. Chemical investigation of callus cultures, regenerated plants, and hairy roots of O. pumila revealed that the regenerated plants and the hairy roots produce almost the same alkaloids, including camptothecin, as do the wild-type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Takayama H, Sakai S (1997) Gelsemium alkaloids. In: Cordell GA (ed) The alkaloids, vol 49. Academic, New York, pp 1–78 and references cited therein

  2. Liu ZJ, Lu RR (1988) Gelsemium alkaloids. In: Brossi A (ed) The alkaloids, vol 33. Academic, New York, pp 83–140 and references cited therein

  3. Rujjanawate C, Kanjanapothi D, Panthong A (2003) Pharmacological effect and toxicity of alkaloids from Gelsemium elegans Benth. J Ethnopharmacol 89:91–95. DOI 10.1016/S0378–8741(03)00267–8

    Google Scholar 

  4. Zhamg L, Lin J, Wu Z (2003) Advances in the study on chemical constituents and pharmacology of Gelsemium elegans (Gardn et Champ.) Benth. J Chin Med Mat 26:451–453

    Article  Google Scholar 

  5. Chi D-B, Lei L-S, Jin H, Pang J-X, Jiang Y-P (2003) Study of koumine-induced apoptosis of human colon adenocarcinoma LoVo cells in vitro. Acad J First Med Coll PLA 23:911–913

    CAS  Google Scholar 

  6. Kitajima M, Arai Y, Takayama H, Aimi N (1998) A chemical study on “Yakatsu” stored in Shosoin Repository. Isolation and characterization of four indole alkaloids from a 1250-year-old sample of the Chinese toxic medicine. Proc Jpn Acad Ser B 74:159–163

    Google Scholar 

  7. Kogure N, Ishii N, Kitajima M, Wongseripipatana S, Takayama H (2006) Four novel gelsenicine-related oxindole alkaloids from the leaves of Gelsemium elegans Benth. Org Lett 8:3085–3088. DOI 10.1021/ol061062i

    Google Scholar 

  8. Lin L-Z, Cordell GA, Ni C-Z, Clardy J (1991) Oxindole alkaloids from Gelsemium elegans. Phytochemistry 30:1311–1315. DOI 10.1016/S0031–9422(00)95223–3

    Google Scholar 

  9. Kitajima M, Kogure N, Yamaguchi K, Takayama H, Aimi N (2003) Structure reinvestigation of gelsemoxonine, a constituent of Gelsemium elegans, reveals a novel, azetidine-containing indole alkaloid. Org Lett 5:2075–2078. DOI 10.1021/ol0344725

    Google Scholar 

  10. Kitajima M, Nakamura T, Kogure N, Ogawa M, Mitsuno Y, Ono K, Yano S, Aimi N, Takayama H (2006) Isolation of gelsedine-type indole alkaloids from Gelsemium elegans and evaluation of the cytotoxic activity of Gelsemium alkaloids for A431 epidermoid carcinoma cells. J Nat Prod 69:715–718. DOI 10.1021/np060016o

    Google Scholar 

  11. Kogure N, Nishiya C, Kitajima M, Takayama H (2005) Six new indole alkaloids from Gelsemium sempervirens Ait. f. Tetrahedron Lett 46:5857–5861. DOI 10.1016/j.tetlet.2005.06.136

    Google Scholar 

  12. Kitajima M, Urano A, Kogure N, Takayama H, Aimi N (2003) New oxindole alkaloids and iridoid from carolina jasmine (Gelsemium sempervirens Ait. f.). Chem Pharm Bull 51:1211–1214. DOI 10.1248/cpb.51.1211

    Google Scholar 

  13. Wall M E, Wani M C (1998) History and future prospects of camptothecin and taxol. In: Cordell G A (ed) The alkaloids, vol 50. Academic, New York, pp 509–535 and references cited therein

  14. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890. DOI 10.1021/ja00968a057

    Google Scholar 

  15. Tafur S, Nelson JD, DeLong DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262

    PubMed  CAS  Google Scholar 

  16. Arbain D, Putra DP, Sargent MV (1993) The alkaloids of Ophiorrhiza filistipula. Aust J Chem 46:977–985

    Article  CAS  Google Scholar 

  17. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12:1585–1604. DOI 10.1016/j.bmc.2003.11.036 and references cited therein

    Google Scholar 

  18. Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J (1989) Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett 30:4991–4994. DOI 10.1016/S0040–4039(01)80563–3

    Google Scholar 

  19. Aimi N, Hoshino H, Nishimura M, Sakai S, Haginiwa J (1990) Chaboside, first natural glycocamptothecin found from Ophiorrhiza pumila. Tetrahedron Lett 31:5169–5172. DOI 10.1016/S0040–4039(00)97833-X

    Google Scholar 

  20. Aimi N, Ueno M, Hoshino H, Sakai S (1992) Synthesis and absolute configuration of chaboside, first natural gluco-camptothecin. Tetrahedron Lett 33:5403–5404. DOI 10.1016/S0040–4039(00)79105–2

    Google Scholar 

  21. Kitajima M, Masumoto S, Takayama H, Aimi N (1997) Isolation and partial synthesis of 3(R)- and 3(S)-deoxypumilosides; structural revision of the key metabolites from the camptothecin producing plant, Ophiorrhiza pumila. Tetrahedron Lett 38:4255–4258. DOI 10.1016/S0040–4039(97)00858–7

    Google Scholar 

  22. Aimi N, Tsuyuki T, Murakami H, Sakai S, Haginiwa J (1985) Structure of ophiorines A and B; novel type gluco indole alkaloids isolated from Ophiorrhiza spp. Tetrahedron Lett 26:5299–5302. DOI 10.1016/S0040–4039(00)95021–4

    Google Scholar 

  23. Aimi N, Murakami H, Tsuyuki T, Nishiyama T, Sakai S, Haginiwa J (1986) Hydrolytic degradation of β-carboline-type monoterpenoid glucoindole alkaloids: a possible mechanism for harman formation in Ophiorrhiza and related rubiaceous plants. Chem Pharm Bull 34:3064–3066

    CAS  Google Scholar 

  24. Kitajima M, Fujii N, Yoshino F, Sudo H, Saito K, Aimi N, Takayama H (2005) Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis. Chem Pharm Bull 53:1355–1358. DOI 10.1248/cpb.53.1355

    Google Scholar 

  25. Kitajima M, Fischer U, Nakamura M, Ohsawa M, Ueno M, Takayama H, Unger M, Stöckigt J, Aimi N (1998) Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry 48:107–111. DOI 10.1016/S0031–9422(97)00614–6

    Google Scholar 

  26. Kitajima M, Nakamura M, Takayama H, Saito K, Stöckigt J, Aimi N (1997) Constituents of regenerated plants of Ophiorrhiza pumila; formation of a new glycocamptothecin and predominant formation of (3R)-deoxypumiloside over (3S)-congener. Tetrahedron Lett 38:8997–9000. DOI 10.1016/S0040–4039(97)10404-X

    Google Scholar 

  27. Kitajima M, Nakamura M, Watanabe A, Takayama H, Aimi N. (1998) Synthesis and absolute configuration of 9-β-d-glucosyloxycamptothecin, a new gluco camptothecin isolated from Ophiorrhiza pumila regenerated plants. J Chem Soc Perkin Trans 1:389–390. DOI 10.1039/a708263k

    Google Scholar 

  28. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 21:267–271. DOI: 10.1007/s002990100320

    Google Scholar 

  29. Kitajima M, Yoshida S, Yamagata K, Nakamura M, Takayama H, Saito K, Seki H, Aimi N (2002) Camptothecin-related alkaloids from hairy roots of Ophiorrhiza pumila. Tetrahedron 58:9169–9178. DOI 10.1016/S0040–4020(02)01196–1

    Google Scholar 

  30. Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K (2002) Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotec Lett 24:359–363. DOI 10.1023/A:1014568904957

    Google Scholar 

  31. Kitajima M, Niwa M, Yanagisawa C, Takayama H, Sudo H, Saito K, Aimi N (2002) Camptothecin-related alkaloids from culture medium of hairy roots of Ophiorrhiza pumila. Nat Med 56:275

    Google Scholar 

  32. Hutchinson CR, Heckendorf AH, Straughn JL, Daddona PE, Cane DE (1979) Biosynthesis of camptothecin. 3. Definition of strictosamide as the penultimate biosynthetic precursor assisted by 13C and 2H NMR spectroscopy. J Am Chem Soc 101:3358–3369. DOI 10.1021/ja00506a037

    Google Scholar 

  33. Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose. Plant Physiol 134:161–170. DOI 10.1104/pp.103.029389

    Google Scholar 

Download references

Acknowledgments

I would like to express my deepest gratitude to Professors Norio Aimi and Hiromitsu Takayama, as well as to collaborators in the Laboratory of Molecular Structure and Biological Function of the Graduate School of Pharmaceutical Sciences, Chiba University, for their supervision and collaboration throughout the research. Thanks are also due to Professor Shingo Yano and Dr. Tomonori Nakamura, Graduate School of Pharmaceutical Sciences, Chiba University, for their assistance in the pharmacological evaluation of Gelsemium alkaloids, and to Professor Kazuki Saito, Graduate School of Pharmaceutical Sciences, Chiba University, and Professor Joachim Stöckigt, Institute of Pharmacy, Johannes Gutenberg University, for collaboration on the research on cell and tissue cultures of Ophiorrhiza pumila. My sincerest gratitude goes also to Dr. Sumphan Wongseripipatana, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand, and the Atagawa Tropical and Alligator Garden in Izu, Japan, for providing plant resources. This work was supported by a grant-in-aid for scientific research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Kitajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitajima, M. Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza . J Nat Med 61, 14–23 (2007). https://doi.org/10.1007/s11418-006-0101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-006-0101-z

Keywords

Navigation