Skip to main content
Log in

The Role of Notations in Mathematics

  • Published:
Philosophia Aims and scope Submit manuscript

Abstract

The terms of a mathematical problem become precise and concise if they are expressed in an appropriate notation, therefore notations are useful to mathematics. But are notations only useful, or also essential? According to prevailing view, they are not essential. Contrary to this view, this paper argues that notations are essential to mathematics, because they may play a crucial role in mathematical discovery. Specifically, since notations may consist of symbolic notations, diagrammatic notations, or a mix of symbolic and diagrammatic notations, notations may play a crucial role in mathematical discovery in different ways. Some examples are given to illustrate these ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aczel, A. D. (2015). Finding zero. New York: Palgrave Macmillan.

    Google Scholar 

  • Barrow, J. D. (2001). The book of nothing. New York: Vintage Books.

    Google Scholar 

  • Biletch, B. D., Yu, H., & Kay, K. R. (2015). An analysis of mathematical notation: For better or for worse. Worchester: Worchester Polytechnic Institute.

    Google Scholar 

  • Brown, J. R. (2008). Philosophy of mathematics: A contemporary introduction to the world of proofs and pictures. Abingdon: Routledge.

    Google Scholar 

  • Cajori, F. (1913). History of the exponential and logarithmic concepts I. The American Mathematical Monthly, 20, 5–14.

    Google Scholar 

  • Cajori, F. (1923). The history of notations of the calculus. Annals of Mathematics, 25(1), 1–46.

    Google Scholar 

  • Cajori, F. (1993). A history of mathematical notation. Mineola: Dover.

    Google Scholar 

  • Cellucci, C. (2009). The universal generalization problem. Logique & Analyse, 205, 3–20.

  • Cellucci, C. (2013). Philosophy of mathematics: Making a fresh start. Studies in History and Philosophy of Science Part A, 44(1), 32–42.

  • Cellucci, C. (2017). Is Mathematics Problem Solving or Theorem Proving?. Foundations of Science, 22(1), 183–199.

  • Cellucci, C. (2018). Definition in mathematics. European Journal for Philosophy of Science, 8(3), 605–629.

  • Cellucci, C. (2019). Diagrams in Mathematics. Foundations of Science, 24(3), 583–604.

  • Châtelet, G. (2000). Figuring space: Philosophy, mathematics and physics. Cham: Springer.

    Google Scholar 

  • Châtelet, G. (2006). Interlacing the singularity, the diagram and the metaphor. In S. B. Duffy (Ed.), Virtual mathematics: The logic of difference (pp. 31–45). Manchester: Clinamen.

    Google Scholar 

  • Chrisomalis, S. (2010). Numerical notation: A comparative history. Cambridge: Cambridge University Press.

    Google Scholar 

  • Colyvan, M. (2012). An introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Conway, J. H., & Shipman, J. (2013). Extreme proofs I: The irrationality of \( \sqrt{2} \). The Mathematical Intelligencer, 35(3), 2–7.

  • De Cruz, H., & de Smedt, J. (2013). Mathematical symbols as epistemic actions. Synthese, 190, 3–19.

    Google Scholar 

  • de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. Cambridge: Cambridge University Press.

    Google Scholar 

  • Descartes, R. (1996). Œuvres. Paris: Vrin.

    Google Scholar 

  • Devlin, K. (2013). The music of math games. American Scientist, 101, 87–91.

    Google Scholar 

  • Diophantus. (1893–1895). Opera omnia. Leipzig: Teubner.

  • Dutilh Novaes, C. (2012). Formal languages in logic: A philosophical and cognitive analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dutilh Novaes, C. (2013). Mathematical reasoning and external symbolic systems. Logique et Analyse, 221, 45–65.

    Google Scholar 

  • Enderton, H. B. (1977). Elements of set theory. New York: Academic Press.

    Google Scholar 

  • Glaser, A. (1971). History of binary and other nondecimal numeration. Los Angeles: Tomash Publishers.

    Google Scholar 

  • Grabiner, J. (1974). Is mathematical truth time-dependent? The American Mathematical Monthly, 81, 354–365.

    Google Scholar 

  • Herbrand, J. (1971). Logical writings. Dordrecht: Springer.

    Google Scholar 

  • Ifrah, G. (2000). The universal history of numbers: From prehistory to the invention of the computer. New York: Wiley.

    Google Scholar 

  • Kaplan, R. (2000). The nothing that is: A natural history of zero. Oxford: Oxford University Press.

    Google Scholar 

  • Kleiner, I. (2007). A history of abstract algebra. Cham: Birkhäuser.

    Google Scholar 

  • Leibniz, G. W. (1923–) Sämtliche Schriften und Briefe. Berlin: Academie Verlag.

  • Leibniz, G. W. (1971). Mathematische Schriften. Hildesheim: Olms.

    Google Scholar 

  • Lengnink, K., & Schlimm, D. (2010). Learning and understanding numeral system: Semantic aspects of number representations from an educational perspective. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 235–264). London: College Publications.

  • Macbeth, D. (2013). Writing reason. Logique et Analyse, 221, 25–44.

    Google Scholar 

  • Mazur, J. (2014). Enlightening symbols: A short history of mathematical notation and its hidden powers. Princeton: Princeton University Press.

    Google Scholar 

  • Menninger, K. (1992). Number words and number symbols: A cultural history of numbers. Mineola: Dover.

    Google Scholar 

  • Meskens, A. (2010). Travelling mathematics – The fate of Diophantos’ arithmetic. Cham: Springer.

    Google Scholar 

  • Montelle, C. (2011). A ‘symbolic’ history of the derivative. In D. Jardine & A. Shell-Gellasch (Eds.), Mathematical time capsules (pp. 151–158). Washington: The Mathematical Association of America.

    Google Scholar 

  • Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.

    Google Scholar 

  • Newton, I. (1967–1981). The mathematical papers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pender, W., Saddler, D., Shea, J., & Ward, D. (2012). Cambridge 3 unit mathematics year 11 enhanced version. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pisano, L. (2002). Liber abaci. Cham: Springer.

    Google Scholar 

  • Pólya, G. (2004). How to solve it: A new aspect of mathematical method. Princeton: Princeton University Press.

    Google Scholar 

  • Sartorius von Waltershausen, W. (1856). Gauss zum Gedächtniss. Leipzig: Hirzel.

    Google Scholar 

  • Schlimm, D. (2018a). On Frege’s Begriffsschrift notation for propositional logic: Design principles and trade-offs. History and Philosophy of Logic, 39(1), 53–79.

    Google Scholar 

  • Schlimm, D. (2018b). Numbers through numerals: The constitutive role of eternal representations. In S. Bangu (Ed.), Naturalizing logico-mathematical knowledge: Approaches from philosophy, psychology and cognitive science (pp. 195–217). New York: Routledge.

    Google Scholar 

  • Seife, C. (2000). Zero: The biography of a dangerous idea. New York: Viking.

    Google Scholar 

  • Sen, S. K., & Agarwal, R. P. (2016). A landmark discovery, the dreadful void, and the ultimate mind. London: Academic Press.

    Google Scholar 

  • Serfati, M. (2005). La révolution symbolique: La constitution de l’écriture symbolique mathématique. Paris: Petra.

    Google Scholar 

  • van der Waerden, B. L. (1976). Defence of a ‘shocking’ point of view. Archive for History of Exact Sciences, 15, 199–210.

    Google Scholar 

  • Velleman, D. J. (2017). Calculus: A rigorous first course. Mineola: Dover.

    Google Scholar 

  • Viète, F. (1646). Opera mathematica. Leiden: Ex Officina Bonaventurae & Abrahami Elzeviriorum.

    Google Scholar 

  • Whitehead, A. N. (2017). An introduction to mathematics. Mineola: Dover.

    Google Scholar 

Download references

Acknowledgments

I am grateful to Otávio Bueno, Catarina Dutilh Novaes, Danielle Macbeth, Dirk Schlimm, Nathalie Sinclair, Fabio Sterpetti, and Robert Thomas, for critical comments and helpful suggestions concerning earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cellucci.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellucci, C. The Role of Notations in Mathematics. Philosophia 48, 1397–1412 (2020). https://doi.org/10.1007/s11406-019-00162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11406-019-00162-9

Keywords

Navigation