Skip to main content

Advertisement

Log in

Delay-Dependent exponential stability for nonlinear reaction-diffusion uncertain Cohen-Grossberg neural networks with partially known transition rates via Hardy-Poincaré inequality

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, stochastic global exponential stability criteria for delayed impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks (CGNNs for short) are obtained by using a novel Lyapunov-Krasovskii functional approach, linear matrix inequalities (LMIs for short) technique, Itô formula, Poincaré inequality and Hardy-Poincaré inequality, where the CGNNs involve uncertain parameters, partially unknown Markovian transition rates, and even nonlinear p-Laplace diffusion (p > 1). It is worth mentioning that ellipsoid domains in ℝm (m ≥ 3) can be considered in numerical simulations for the first time owing to the synthetic applications of Poincaré inequality and Hardy-Poincaré inequality. Moreover, the simulation numerical results show that even the corollaries of the obtained results are more feasible and effective than the main results of some recent related literatures in view of significant improvement in the allowable upper bounds of delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, M. and Grossberg, S., Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Systems Man Cybernt., 13, 1983, 815–826.

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhang, X., Wu, S. and Li, K., Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms, Commun. Nonlinear Sci. Numer. Simulat., 16, 2011, 1524–1532.

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, X. R., Rao, R. F. and Zhong, S. M., LMI approach to stability analysis of Cohen-Grossberg neural networks with p-Laplace diffusion, J. App. Math., 2012, 523812, 12 pages.

    Google Scholar 

  4. Rong, L. B., Lu, W. L. and Chen, T. P., Global exponential stability in Hopfield and bidirectional associative memory neural networks with time delays, Chin. Ann. Math. Ser. B, 25(2), 2004, 255–262.

    Article  MATH  MathSciNet  Google Scholar 

  5. Rakkiyappan, R. and Balasubramaniam, P., Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays, Nonlinear Anal. Hybrid Syst., 3, 2009, 408–417.

    Article  MATH  MathSciNet  Google Scholar 

  6. Rao, R. F. and Pu, Z. L., Stability analysis for impulsive stochastic fuzzy p-Laplace dynamic equations under Neumann or Dirichlet boundary condition, Bound. Value Probl., 2013, 2013:133, 14 pages.

    Article  MathSciNet  Google Scholar 

  7. Balasubramaniam, P. and Rakkiyappan, R., Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays, Nonlinear Anal. Hybrid Syst., 3, 2009, 207–214.

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, H. and Wang, Y., Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 19, 2008, 366–370.

    Article  Google Scholar 

  9. Song, Q. K. and Cao J. D., Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays, J. Comp. Appl. Math., 197, 2006, 188–203.

    Article  MATH  MathSciNet  Google Scholar 

  10. Rao, R. F., Wang, X. R., Zhong, S. M. and Pu, Z. L., LMI approach to exponential stability and almost sure exponential stability for stochastic fuzzy Markovian jumping Cohen-Grossberg neural networks with nonlinear p-Laplace diffusion, J. Appl. Math., 2013, 396903, 21 pages.

    Google Scholar 

  11. Jiang, M., Shen, Y. and Liao, X., Boundedness and global exponential stability for generalized Cohen-Grossberg neural networks with variable delay, Appl. Math. Comp., 172, 2006, 379–393.

    Article  MATH  MathSciNet  Google Scholar 

  12. Haykin, S., Neural Networks, Prentice-Hall, Upper Saddle River, NJ, USA, 1994.

    MATH  Google Scholar 

  13. Zhu, Q. and Cao, J., Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays, IEEE Trans. System, Man, and Cybernt., 41, 2011, 341–353.

    Google Scholar 

  14. Zhu, Q. and Cao, J., Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays, Neurocomp., 73, 2010, 2671–2680.

    Article  Google Scholar 

  15. Zhu, Q., Yang, X. and Wang, H., Stochastically asymptotic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances, J. Franklin Inst., 347, 2010, 1489–1510.

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhu, Q. and Cao, J., Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays, Discrete Dyn. Nat. Soc., 2009, 490515, 20 pages.

    Google Scholar 

  17. Zhu, Q. and Cao, J., Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 21, 2010, 1314–1325.

    Article  Google Scholar 

  18. Liang X. and Wang, L. S., Exponential stability for a class of stochastic reaction-diffusion Hopfield neural networks with delays, J. Appl. Math., 2012, 693163, 12 pages.

    Google Scholar 

  19. Zhang, Y. T., Asymptotic stability of impulsive reaction-diffusion cellular neural networks with time-varying delays, J. Appl. Math., 2012, 501891, 17 pages.

    Google Scholar 

  20. Abdelmalek, S., Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions, J. Appl. Math., 2007, 12375, 15 pages.

    Google Scholar 

  21. Higham, D. J. and Sardar, T., Existence and stability of fixed points for a discretised nonlinear reaction-diffusion equation with delay, Appl. Numer. Math., 18, 1995, 155–173.

    Article  MATH  MathSciNet  Google Scholar 

  22. Baranwal, V. K., Pandey, R. K., Tripathi, M. P. and Singh, O. P., An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method, Commun. Nonlinear Sci. Numer. Simul., 17, 2012, 3906–3921.

    Article  MATH  MathSciNet  Google Scholar 

  23. Meral, G. and Tezer-Sezgin, M., The comparison between the DRBEM and DQM solution of nonlinear reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 16, 2011, 3990–4005.

    Article  MATH  MathSciNet  Google Scholar 

  24. Liang, G., Blow-up and global solutions for nonlinear reaction-diffusion equations with nonlinear boundary condition, Appl. Math. Comput., 218, 2011, 3993–3999.

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, H., Zhang, Y. and Zhao, Y., Stability analysis for uncertain neutral systems with discrete and distributed delays, Appl. Math. Comput., 218, 2012, 11351–11361.

    Article  MATH  MathSciNet  Google Scholar 

  26. Sheng, L. and Yang, H., Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays, Chaos, Sol. & Frac., 40, 2009, 2102–2113.

    Article  MATH  MathSciNet  Google Scholar 

  27. Tian, J. K., Li, Y., Zhao, J. and Zhong, S. M., Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates, Appl. Math. Comput., 218, 2012, 5769–5781.

    Article  MATH  MathSciNet  Google Scholar 

  28. Rao, R. F., Zhong, S. M. and Wang, X. R., Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks with p-Laplace diffusion and partially known transition rates via a differential inequality, Adv. Diff. Equations, 2013, 2013:183.

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y. and Luo, Q., Novel stability criteria for impulsive delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincaré inequality, Chaos, Sol. & Frac., 45, 2012, 1033–1040.

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, Y. and Luo, Q., Global exponential stability of impulsive delayed reaction-diffusion neural networks via Hardy-Poincaré inequality, Neurocomp., 83, 2012, 198–204.

    Article  MathSciNet  Google Scholar 

  31. Li, Y. and Zhao, K., Robust stability of delayed reaction-diffusion recurrent neural networks with Dirichlet boundary conditions on time scales, Neurocomp., 74, 2011, 1632–1637.

    Article  Google Scholar 

  32. Wang, K., Teng, Z. and Jiang, H., Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions, Math. Comp. Modelling, 52, 2010, 12–24.

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, Z., Zhang, H. and Li, P., An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays, IEEE Trans. System, Man, and Cybern., 40, 2010, 1596–1606.

    Article  Google Scholar 

  34. Wu, A. L. and Fu, C. J., Global exponential stability of non-autonomous FCNNs with Dirichlet boundary conditions and reaction-diffusion terms, Appl. Math. Modelling, 34, 2010, 3022–3029.

    Article  MATH  MathSciNet  Google Scholar 

  35. Pan, J. and Zhong, S. M., Dynamic analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays, Adv. Diff. Equations, 2009, 410823, 18 pages.

    Google Scholar 

  36. Brezis, H. and Vazquez, J. L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Comp. Mad., 10, 1997, 443–469.

    MATH  MathSciNet  Google Scholar 

  37. Wang, Y., Xie, L. and de Souza, C. E., Robust control of a class of uncertain nonlinear system, Systems Control Lett., 19, 1992, 139–149.

    Article  MathSciNet  Google Scholar 

  38. Kao, Y. G., Guo, J. F., Wang C. H. and Sun, X. Q., Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen-Grossberg neural networks with mixed delays, J. Franklin Inst., 349(6), 2012, 1972–1988.

    Article  MathSciNet  Google Scholar 

  39. Rakkiyappan, R. and Balasubramaniam, P., Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays, Nonlinear Anal. Hyb. Syst., 3, 2009, 408–417.

    Article  MATH  MathSciNet  Google Scholar 

  40. Rao, R. F., Pu, Z. L., Zhong, S. M. and Huang, J. L., On the role of diffusion behaviors in stability criterion for p-Laplace dynamical equations with infinite delay and partial fuzzy parameters under Dirichlet boundary value, J. Appl. Math., 2013, 940845, 8 pages.

    Google Scholar 

  41. Rao, R. F., Zhong, S. M. and Wang, X. R., Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion, Commun. Nonlinear Sci. Numer. Simulat., 19(1), 2014, 258–273.

    Article  MathSciNet  Google Scholar 

  42. Rao, R. F. and Pu, Z. L., LMI-based stability criterion of impulsive TS fuzzy dynamic equations via fixed point theory, Abstract and Applied Analysis, 2013, 261353, 9 pages.

    Google Scholar 

  43. Pu, Z. L. and Rao, R. F., Exponential robust stability of TS fuzzy stochastic p-Laplace PDEs under zero-boundary condition, Bound. Value Probl., 2013, 2013: 264, 14 pages.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruofeng Rao.

Additional information

This work was supported by the National Basic Research Program of China (No. 2010CB732501), the Scientific Research Fund of Science Technology Department of Sichuan Province (Nos. 2010JY0057, 2012JYZ010), the Sichuan Educational Committee Science Foundation (Nos. 08ZB002, 12ZB349) and the Scientific Research Fund of Sichuan Provincial Education Department (Nos. 14ZA0274, 08ZB002, 12ZB349).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R. Delay-Dependent exponential stability for nonlinear reaction-diffusion uncertain Cohen-Grossberg neural networks with partially known transition rates via Hardy-Poincaré inequality. Chin. Ann. Math. Ser. B 35, 575–598 (2014). https://doi.org/10.1007/s11401-014-0839-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0839-7

Keywords

2000 MR Subject Classification

Navigation