1 Introduction

In [1], Gardner and Hartenstine established an interesting inequality. This inequality is crucial in their proof (as it was in [2]).

Theorem A

For \(x_{0}, y_{0}>0\) and reals \(x_{i}\), \(y _{i}\), \(i = 1,\ldots ,n\), we have

$$ \frac{ (\sum_{i=1}^{n}(x_{i}+y_{i})^{2} )^{(n-1)/2}}{(x _{0}+y_{0})^{n-2}} \leq \frac{ (\sum_{i=1}^{n}x_{i}^{2} ) ^{(n-1)/2}}{x_{0}^{n-2}}+ \frac{ (\sum_{i=1}^{n}y_{i}^{2} ) ^{(n-1)/2}}{y_{0}^{n-2}}, $$
(1.1)

with equality if and only if either \(x_{i}=y_{i}=0\) for \(i=1,2,\ldots ,n\) or \(x_{i}=\alpha y_{i}\) for \(i=0,1,\ldots ,n\), and some \(\alpha >0\).

The first aim of this paper is to give a new generalization of the Gardner–Hartenstine inequality (1.1). Our result is given in the following theorem.

Theorem 1.1

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}(x_{ij}+y_{ij})^{r} ) ^{1/r}}{(x_{00}+y_{00})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{1/r}}{x_{00}^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{1/r}}{y_{00}^{1/q}} \biggr)^{p}, $$
(1.2)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\), \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\), \(j=0,1, \ldots ,m\), and some \(\alpha >0\).

Remark 1.2

Let \(x_{ij}\) and \(y_{ij}\) change \(x_{i}\) and \(y_{i}\), respectively, with appropriate transformation, and putting \(m=1\), \(r=2\), \(p=n-1\), and \(q=(n-1)/(n-2)\) in (1.2), (1.2) becomes (1.1).

Another aim of this paper is to give an integral form of (1.2). Our result is given in the following theorem.

Theorem 1.3

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y)>0\) and \(f(x,y)\), \(g(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$ \begin{aligned}[b] &\biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}(f(x,y)+g(x,y))^{r}\,dx \,dy ) ^{1/r}}{(u(x,y)+v(x,y))^{1/q} } \biggr)^{p}\\ &\quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{1/r}}{u(x,y)^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p}, \end{aligned} $$
(1.3)

with equality if and only if either \((\|f(x,y)\|_{r}^{r},\| g(x,y) \|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y)\|_{r}^{r} )\) for some \(\alpha >0\) or \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r}^{r}=0\).

Let \(f(x,y)\) and \(g(x,y)\) change \(f(x)\) and \(g(x)\), respectively, with appropriate transformation, and putting \(r=2\), \(p=n-1\) and \(q=(n-1)/(n-2)\) in (1.3), (1.3) becomes the following result.

Corollary 1.4

If \(u(x), v(x)>0\) and \(f(x)\), \(g(x)\) are continuous functions on \([a,b]\), then

$$ \frac{ (\int _{a}^{b}(f(x)+g(x))^{2}\,dx )^{(n-1)/2}}{(u(x)+v(x))^{n-2} }\leq \frac{ (\int _{a}^{b}f(x)^{2}\,dx )^{(n-1)/2}}{u(x)^{n-2}}+ \frac{ (\int _{a}^{b}g(x)^{2}\,dx )^{(n-1)/2}}{v(x)^{n-2}}, $$
(1.4)

with equality if and only if either \(\|f(x)\|_{r}^{r}=\|g(x)\|_{r} ^{r}=0\) or \((\|f(x)\|_{r}^{r},\| g(x)\|_{r}^{r} )=\alpha (\|u(x)\|_{r}^{r}, \|v(x)\|_{r}^{r} )\) for some \(\alpha >0\).

This is just an integral form of (1.1) established by Gardner and Hartenstine [1].

As applications, we combine another important inequality and give some broader improvements. Our results are given in the following theorems.

Theorem 1.5

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}, a_{00}, b_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(a_{ij}\), \(b_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$\begin{aligned}& \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00} ^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \end{aligned}$$
(1.5)

with equality if and only if either \(x_{ij}=y_{ij}=0\) and \(a_{ij}=b _{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y _{ij}\) and \(a_{ij}=\beta b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1, \ldots ,m\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x _{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr): \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1} ^{n}a_{ij}^{r} )^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1} ^{m}\sum_{i=1}^{n}b_{ij}^{r} )^{p/r}}{b_{00}^{p/q}} \biggr) \\& \quad =(x_{00}+y_{00}):(a_{00}+b_{00}). \end{aligned}$$

Theorem 1.6

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y), u'(x,y), v'(x,y)>0\) and \(f(x,y)\), \(g(x,y)\), \(f'(x,y)\), \(g'(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {} + \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \end{aligned}$$
(1.6)

with equality if and only if either \(f(x,y)=g(x,y)=0\) and \(f'(x,y)=g'(x,y)=0\) or \((f(x,y), g(x,y))=\alpha (u(x,y),v(x,y))\) and \((f'(x,y),g'(x,y))=\beta (u'(x,y),v'(x,y))\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy )^{p/r}}{v(x,y)^{p/q}} \biggr) \\& \qquad{} : \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r} ) ^{p/r}}{v'(x,y)^{p/q}} \biggr) \\& \quad =\bigl(u(x,y)+v(x,y)\bigr):\bigl(u'(x,y)+v'(x,y) \bigr). \end{aligned}$$

2 Generalizations

Our main results are given in the following theorems.

Theorem 2.1

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}(x_{ij}+y_{ij})^{r} ) ^{1/r}}{(x_{00}+y_{00})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{1/r}}{x_{00}^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{1/r}}{y_{00}^{1/q}} \biggr)^{p}, $$
(2.1)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\), \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\), \(j=0,1, \ldots ,m\), and some \(\alpha >0\).

Proof

From Minkowski’s and Hölder’s inequalities, we obtain

$$\begin{aligned} \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(x_{ij}+y_{ij})^{r} \Biggr)^{1/r} \leq & \Biggl(\sum_{j=1}^{m} \sum_{i=1}^{n}x_{ij}^{r} \Biggr)^{1/r}+ \Biggl(\sum_{j=1}^{m} \sum_{i=1}^{n}y_{ij}^{r} \Biggr)^{1/r} \\ =& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{1/r}}{x_{00}^{1/q}} \biggr)x_{00}^{1/q} + \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{1/r}}{y_{00}^{1/q}} \biggr)y _{00}^{1/q} \\ \leq & \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{1/r}}{x_{0}^{1/q}} \biggr)^{p}+ \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{1/r}}{y_{00}^{1/q}} \biggr) ^{p} \biggr\} ^{1/p} \\ &{}\times \bigl(\bigl(x_{00}^{1/q}\bigr)^{q}+ \bigl(y_{00}^{1/q}\bigr)^{q} \bigr)^{1/q} \\ =& \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ijj} ^{r} )^{p/r}}{y_{00}^{p/q}} \biggr\} ^{1/p} (x_{00}+y_{00} ) ^{1/q}. \end{aligned}$$

Rearranging, (2.1) follows.

The following is a discussion of the conditions for this equal sign to hold. Suppose that equality holds in (2.1). Then equality holds in Minkowski’s inequality, which implies that \(x_{ij}=\alpha y_{ij}\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) and some \(\alpha \geq 0\). Equality also holds in Hölder’s inequality, implying that there are constants β and γ with \(\beta ^{2}+\gamma ^{2}>0\) such that

$$ \beta \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{1/r}}{x_{00}^{1/q}} \biggr)^{p} =\gamma \bigl(x_{00}^{1/q}\bigr)^{q}, $$

or equivalently

$$ \beta \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}x_{ij}^{r} \Biggr)^{p/r}= \gamma x_{00}^{p}, $$

and the same equation with \(y_{ij}\) instead of \(x_{ij}\), \(i=0,1,\ldots ,n\); \(j=0,1,\ldots ,m\). Therefore

$$\begin{aligned} \gamma x_{00}^{p} =&\beta \Biggl(\sum _{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} \Biggr)^{p/r} \\ =&\beta \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(\alpha y_{ij})^{r} \Biggr) ^{p/r} \\ =&\gamma (\alpha y_{00})^{p}. \end{aligned}$$

Obviously, if \(\gamma =0\), then \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\); \(j=1,\ldots ,m\). If \(\gamma \neq 0\), then \(\alpha >0\) and \(x_{ij}= \alpha y_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\).

This proof is complete. □

Let \(x_{ij}\) become \(x_{i}\) with appropriate transformation, and \(m=1\), (2.2) reduces to the following result.

Corollary 2.2

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{0}, y_{0}>0\) and reals \(x_{i}\), \(y_{i}\), \(i=1,2,\ldots ,n\), then

$$ \biggl(\frac{ (\sum_{i=1}^{n}(x_{i}+y_{i})^{r} )^{1/r}}{(x _{0}+y_{0})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{i=1} ^{n}x_{i}^{r} )^{1/r}}{x_{0}^{1/q}} \biggr)^{p}+ \biggl(\frac{ (\sum_{i=1}^{n}y_{i}^{r} )^{1/r}}{y_{0}^{1/q}} \biggr) ^{p}, $$

with equality if and only if either \(x_{i}=y_{i}=0\) for \(i=1,\ldots ,n\) or \(x_{i}=\alpha y_{i}\) for \(i=0,1,\ldots ,n\), for some \(\alpha >0\).

Theorem 2.3

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y)>0\) and \(f(x,y)\), \(g(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$ \begin{aligned}[b] &\biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}(f(x,y)+g(x,y))^{r}\,dx \,dy ) ^{1/r}}{(u(x,y)+v(x,y))^{1/q} } \biggr)^{p}\\ &\quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{1/r}}{u(x,y)^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p}, \end{aligned} $$
(2.2)

with equality if and only if either \((\|f(x,y)\|_{r}^{r},\| g(x,y) \|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y)\|_{r}^{r} )\) for some \(\alpha >0\) or \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r}^{r}=0\).

Proof

From Minkowski’s and Hölder’s integral inequalities, we obtain

$$\begin{aligned}& \biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f(x,y)+g(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\& \quad \leq \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr)^{1/r}+ \biggl( \int _{a}^{b} \int _{c}^{d}g(x,y)^{r}\,dx \,dy \biggr)^{1/r} \\& \quad = \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{1/r}}{u(x,y)^{1/q}} \biggr)u(x,y)^{1/q} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r} \,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)v(x,y)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{1/r}}{u(x,y)^{1/q}} \biggr)^{p} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p} \biggr\} ^{1/p} \\& \qquad {}\times \bigl(\bigl(u(x,y) ^{1/q}\bigr)^{q}+ \bigl(v(x,y)^{1/q}\bigr)^{q} \bigr)^{1/q} \\& \quad = \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr\} ^{1/p} \\& \qquad {}\times \bigl(u(x,y)+v(x,y) \bigr)^{1/q}. \end{aligned}$$

Rearranging, (2.2) follows.

The following is a discussion of the conditions for this equal sign to hold. Suppose that equality holds in (2.2). Then equality holds in Minkowski’s inequality, which implies that \(f(x,y)=\alpha g(x,y)\) and some \(\alpha \geq 0\). Equality also holds in Hölder’s inequality, implying that there are constants β and γ with \(\beta ^{2}+\gamma ^{2}>0\) such that

$$ \beta \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx ) ^{1/r}}{u(x,y)^{1/q}} \biggr)^{p}=\gamma \bigl(u(x,y)^{1/q}\bigr)^{q}, $$

or equivalently

$$ \beta \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr)^{p/r}= \gamma u(x,y)^{p}, $$

and the same equation with \(g(x,y)\) instead of \(f(x,y)\). Therefore

$$\begin{aligned} \gamma u(x,y)^{p} =&\beta \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr) ^{p/r} \\ =&\beta \biggl( \int _{a}^{b} \int _{c}^{d}\bigl(\alpha g(x,y) \bigr)^{r}\,dx \,dy \biggr) ^{p/r} \\ =&\gamma \bigl(\alpha v(x,y)\bigr)^{p}. \end{aligned}$$

Obviously, if \(\gamma =0\), then \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r} ^{r}=0\). If \(\gamma \neq 0\), then \(\alpha >0\) and \((\|f(x,y)\| _{r}^{r}, \| g(x,y)\|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y) \|_{r}^{r} )\).

This proof is complete. □

Let \(f(x,y)\) become \(f(x)\) with appropriate transformation, (2.2) reduces to the following result.

Corollary 2.4

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x), v(x)>0\) and \(f(x)\), \(g(x)\) are continuous functions on \([a,b]\), then

$$ \biggl(\frac{ (\int _{a}^{b}(f(x)+g(x))^{r}\,dx )^{1/r}}{(u(x)+v(x))^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\int _{a}^{b}f(x)^{r}\,dx ) ^{1/r}}{u(x)^{1/q}} \biggr)^{p}+ \biggl(\frac{ (\int _{a}^{b}g(x)^{r}\,dx ) ^{1/r}}{v(x)^{1/q}} \biggr)^{p}, $$
(2.3)

with equality if and only if either \(\|f(x)\|_{r}^{r}=\|g(x)\|_{r} ^{r}=0\) or \((\|f(x)\|_{r}^{r},\| g(x)\|_{r}^{r} )=\alpha (\|u(x)\|_{r}^{r}, \| v(x)\|_{r}^{r} )\) for some \(\alpha >0\).

3 Improvements

We need the following lemma to prove our main results.

Lemma 3.1

([3] p.39)

If \(a_{i}\geq 0\), \(b_{i}>0\), \(i=1, \ldots ,m\), and \(\sum_{i=1}^{m}\alpha _{i}=1\), then

$$ \Biggl(\prod_{i=1}^{m}(a_{i}+b_{i}) \Biggr)^{\alpha _{i}}\geq \Biggl(\prod_{i=1}^{m}a_{i} \Biggr)^{\alpha _{i}} + \Biggl(\prod_{i=1}^{m}b_{i} \Biggr) ^{\alpha _{i}}, $$
(3.1)

with equality if and only if \(a_{1}/b_{1}=\cdots =a_{m}/b_{m}\).

Theorem 3.2

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}, a_{00}, b_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(a_{ij}\), \(b_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$\begin{aligned}& \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00} ^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \end{aligned}$$
(3.2)

with equality if and only if either \(x_{ij}=y_{ij}=0\) and \(a_{ij}=b _{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y _{ij}\) and \(a_{ij}=\beta b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1, \ldots ,m\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x _{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr): \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1} ^{n}a_{ij}^{r} )^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1} ^{m}\sum_{i=1}^{n}b_{ij}^{r} )^{p/r}}{b_{00}^{p/q}} \biggr) \\& \quad =(x_{00}+y_{00}):(a_{00}+b_{00}). \end{aligned}$$

Proof

From (2.1), we have

$$ \begin{aligned}[b] &\Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(x_{ij}+y_{ij})^{r} \Biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij} ^{r} )^{p/r}}{y_{00}^{p/q}} \biggr\} ^{1/p} (x_{00}+y_{00} ) ^{1/q}, \end{aligned} $$
(3.3)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\) and some \(\alpha >0\), and

$$ \begin{aligned}[b] &\Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(a_{ij}+b_{ij})^{r} \Biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr\} ^{1/p} (a_{00}+b_{00} ) ^{1/q}, \end{aligned} $$
(3.4)

with equality if and only if either \(a_{ij}=b_{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(a_{ij}=\alpha b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\) and some \(\alpha >0\).

From (3.1), (3.3), and (3.4), we obtain

$$\begin{aligned}& \sum_{j=1}^{m}\sum _{i=1}^{n}\bigl[(x_{ij}+y_{ij})^{r}+(a_{ij}+b_{ij})^{r} \bigr] \\& \quad \leq \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( (x_{00}+y_{00} )^{r} \bigr)^{1/q} \\& \qquad {}+ \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( (a _{00}+b_{00} )^{r} \bigr)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl[ (x _{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} \bigr]^{1/q}. \end{aligned}$$

Hence

$$\begin{aligned} \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \leq & \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00} ^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \\ &{}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r}. \end{aligned}$$

From the equality conditions of (3.3), (3.4), and (3.1), we easily get the equality in (3.2). □

Remark 3.3

Let \(a_{ij}=b_{ij}=0\), (3.2) becomes a similar form of (2.1). Putting \(x_{ij}=a_{ij}\), \(y_{ij}=b_{ij}\) in (3.2), where \(i=0,1,\ldots,n\) and \(j=0,1,\ldots,m\), (3.2) reduces to (2.1).

Theorem 3.4

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y), u'(x,y), v'(x,y)>0\) and \(f(x,y)\), \(g(x,y)\), \(f'(x,y)\), \(g'(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad{} + \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \end{aligned}$$
(3.5)

with equality if and only if either \(f(x,y)=g(x,y)=0\) and \(f'(x,y)=g'(x,y)=0\) or \((f(x,y), g(x,y))=\alpha (u(x,y),v(x,y))\) and \((f'(x,y), g'(x,y))=\beta (u'(x,y),v'(x,y))\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy )^{p/r}}{v(x,y)^{p/q}} \biggr)\\& \qquad {}: \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r} ) ^{p/r}}{v'(x,y)^{p/q}} \biggr) \\& \quad =\bigl(u(x,y)+v(x,y)\bigr):\bigl(u'(x,y)+v'(x,y) \bigr). \end{aligned}$$

Proof

From (2.1), we have

$$\begin{aligned} &\biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f(x,y)+g(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr\} ^{1/p} \\ &\qquad {}\times \bigl(u(x,y)+v(x,y) \bigr)^{1/q}, \end{aligned}$$
(3.6)

with equality if and only if either \(f(x,y)=g(x,y)=0\) or \((f(x,y),g(x,y))= \alpha (u(x,y),v(x,y)) \) for some \(\alpha >0\). And

$$\begin{aligned} &\biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f'(x,y)+g'(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr\} ^{1/p} \\ &\qquad {}\times \bigl(u'(x,y)+v'(x,y) \bigr)^{1/q}, \end{aligned}$$
(3.7)

with equality if and only if either \(f'(x,y)=g'(x,y)=0\) or \((f'(x,y),g'(x,y))= \beta (u'(x,y),v'(x,y))\) and for some \(\beta >0\),

From (3.1), (3.6), and (3.7), we obtain

$$\begin{aligned}& \int _{a}^{b} \int _{c}^{d}\bigl[\bigl(f(x,y)+g(x,y) \bigr)^{r}+\bigl(f'(x,y)+g'(x,y) \bigr)^{r}\bigr]\,dx \,dy \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( \bigl(u(x,y)+v(x,y) \bigr) ^{r} \bigr)^{1/q} \\& \qquad {}+ \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p}\\& \qquad {}\times \bigl( \bigl(u'(x,y)+v'(x,y) \bigr) ^{r} \bigr)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \\& \qquad {}\times \bigl[ \bigl(u(x,y)+v(x,y) \bigr)^{r}+ \bigl(u'(x,y)+v'(x,y) \bigr) ^{r} \bigr]^{1/q}. \end{aligned}$$

Hence

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r}. \end{aligned}$$

From the equality conditions of (3.6), (3.7), and (3.1), we easily get the equality in (3.2). □

Remark 3.5

Let \(f'(x,y)=g'(x,y)=0\), (3.3) becomes a similar form of (2.2). Putting \(f(x,y)=f'(x,y)\), \(g(x,y)=g'(x,y)\), \(u(x,y)=u'(x,y)\) and \(v(x,y)=v'(x,y)\) in (3.5), (3.5) reduces to (2.2).