Skip to main content

Advertisement

Log in

Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Inducing autologous liver cells to differentiate into endocrine β cell has been a potential strategy for the treatment of type 1diabetes. However it is still not known which sub-population cells in the liver was responsible for this developmental shift. Pancreatic and duodenal homeobox gene 1 (pdx-1), a crucial transcription factor in pancreatic islet development and differentiation, has attracted much interests in beta cell differentiation experiments. This study was conducted to evaluate whether pdx-1 gene delivered by adeno-associated virus (AAV) could induce autologous liver cells to differentiate into insulin-producing cells and to explore the origin of these cells. Here we used 4 × 10e11 AAV to deliver pdx-1 to STZ-induced diabetic rats via the portal vein. Immunofluorescent staining showed more insulin-positive cells, which had similar morphology with hepatic oval stem cells and were positive for hepatic oval stem cell markers, Thy-1 and cytokeratin 19 (ck19). In addition to the expression of pdx-1, insulin1 and insulin2, RT-PCR and quantitative real-time PCR also detected significantly higher levels of other important transcription factors in AAV-pdx-1 treated diabetic rat livers. AAV-pdx-1 treated diabetic rats showed partially ameliorated hyperglycemia, better gain of body weight and improved lipid levels. Our data indicated that rat hepatic oval stem cells were differentiated into bioactive insulin-producing cells by AAV-pdx-1 delivery in diabetic rats, with promoted expression of some transcription factors necessary for beta cell development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK (2002) Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 99:16105–16110

    Article  PubMed  CAS  Google Scholar 

  2. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  PubMed  CAS  Google Scholar 

  3. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791

    PubMed  CAS  Google Scholar 

  4. Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 100:7253–7258

    Article  PubMed  CAS  Google Scholar 

  5. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 99:8078–8083

    Article  PubMed  CAS  Google Scholar 

  6. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N et al (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568–572

    Article  PubMed  CAS  Google Scholar 

  7. Zhang HG, Xie J, Xu L, Yang P, Xu X, Sun S, Wang Y, Curiel DT, Hsu HC, Mountz JD (2002) Hepatic DR5 induces apoptosis and limits adenovirus gene therapy product expression in the liver. J Virol 76:5692–5700

    Article  PubMed  CAS  Google Scholar 

  8. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9:596–603

    Article  PubMed  CAS  Google Scholar 

  9. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609

    Article  PubMed  CAS  Google Scholar 

  10. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–995

    PubMed  CAS  Google Scholar 

  11. Koizumi M, Nagai K, Kida A, Kami K, Ito D, Fujimoto K, Kawaguchi Y, Doi R (2006) Forced expression of PDX-1 induces insulin production in intestinal epithelia. Surgery 140:273–280

    Article  PubMed  Google Scholar 

  12. Kwon YD, Oh SK, Kim HS, Ku SY, Kim SH, Choi YM, Moon SY (2005) Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol Ther 12:28–32

    Article  PubMed  CAS  Google Scholar 

  13. Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037

    Article  PubMed  CAS  Google Scholar 

  14. Yang YW, Kotin RM (2000) Glucose-responsive gene delivery in pancreatic Islet cells via recombinant adeno-associated viral vectors. Pharm Res 17:1056–1061

    Article  PubMed  CAS  Google Scholar 

  15. Xiao W, Chirmule N, Schnell MA, Tazelaar J, Hughes JV, Wilson JM (2000) Route of administration determines induction of T cell independent humoral response to adeno-associated virus vectors. Mol Ther 1:323–329

    Article  PubMed  CAS  Google Scholar 

  16. Xu R, Li H, Tse LY, Kung HF, Lu H, Lam KS (2003) Diabetes gene therapy: potential and challenges. Curr Gene Ther 3:65–82

    Article  PubMed  CAS  Google Scholar 

  17. Christenson LK, Stouffer RL, Strauss JF (2001) Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic acute regulatory protein gene promoter. J Biol Chem 276:27392–27399

    Article  PubMed  CAS  Google Scholar 

  18. Xu R, Sun X, Tse LY, Li H, Chan PC, Xu S, Xiao W, Kung HF, Krissansen GW, Fan ST (2003) Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology 37:1451–1460

    Article  PubMed  CAS  Google Scholar 

  19. Factor VM, Radaeva SA, Thorgeirsson SS (1994) Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol 145:409–422

    PubMed  CAS  Google Scholar 

  20. Forbes S, Vig P, Poulsom R, Thomas H, Alison M (2002) Hepatic stem cells. J Pathol 197:510–518

    Article  PubMed  Google Scholar 

  21. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, Kumar A, Crawford JM (1999) The canals of Hering and hepatic stem cells in humans. Hepatology 30:1425–1433

    Article  PubMed  CAS  Google Scholar 

  22. Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. FASEB J 10:1249–1256

    PubMed  CAS  Google Scholar 

  23. Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK (1998) Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27:433–445

    Article  PubMed  CAS  Google Scholar 

  24. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  25. Guettier C (2005) Which stem cells for adult liver? Ann Pathol 25:33–44

    Article  PubMed  Google Scholar 

  26. Menthena A, Deb N, Oertel M, Grozdanov PN, Sandhu J, Shah S, Guha C, Shafritz DA, Dabeva MD (2004) Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells 22:1049–1061

    Article  PubMed  Google Scholar 

  27. Moritoki Y, Ueno Y, Kanno N, Yamagiwa Y, Fukushima K, Gershwin ME, Shimosegawa T (2006) Lack of evidence that bone marrow cells contribute to cholangiocyte repopulation during experimental cholestatic ductal hyperplasia. Liver Int 26:457–466

    Article  PubMed  Google Scholar 

  28. Vig P, Russo FP, Edwards RJ, Tadrous PJ, Wright NA, Thomas HC, Alison MR, Forbes SJ (2006) The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology 43:316–324

    Article  PubMed  Google Scholar 

  29. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M (2003) The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA 100:11881–11888

    Article  PubMed  CAS  Google Scholar 

  30. Grimm D, Zhou S, Nakai H, Thomas CE, Storm TA, Fuess S, Matsushita T, Allen J, Surosky R, Lochrie M et al (2003) Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 102:2412–2419

    Article  PubMed  CAS  Google Scholar 

  31. Nathwani AC, Davidoff A, Hanawa H, Zhou JF, Vanin EF, Nienhuis AW (2001) Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 97:1258–1265

    Article  PubMed  CAS  Google Scholar 

  32. Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF, Stafford DW, Patel S, Thompson AR, Nichols T et al (1999) Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 5:64–70

    Article  PubMed  CAS  Google Scholar 

  33. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM (1999) Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 96:3906–3910

    Article  PubMed  CAS  Google Scholar 

  34. Le Lay J, Stein R (2006) Involvement of PDX-1 in activation of human insulin gene transcription. J Endocrinol 188:287–294

    Article  PubMed  CAS  Google Scholar 

  35. Macfarlane WM, Shepherd RM, Cosgrove KE, James RF, Dunne MJ, Docherty K (2000) Glucose modulation of insulin mRNA levels is dependent on transcription factor PDX-1 and occurs independently of changes in intracellular Ca2+. Diabetes 49:418–423

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, Gotow T, Miyatsuka T, Umayahara Y, Yamasaki Y et al (2002) PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes 51:2505–2513

    Article  PubMed  CAS  Google Scholar 

  37. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457

    PubMed  CAS  Google Scholar 

  38. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542

    PubMed  CAS  Google Scholar 

  39. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11:2323–2334

    Article  PubMed  CAS  Google Scholar 

  40. Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019

    Article  PubMed  CAS  Google Scholar 

  41. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292–3307

    Article  PubMed  CAS  Google Scholar 

  42. Oster A, Jensen J, Edlund H, Larsson LI (1998) Homeobox gene product Nkx 6.1 immunoreactivity in nuclei of endocrine cells of rat and mouse stomach. J Histochem Cytochem 46:717–721

    PubMed  CAS  Google Scholar 

  43. Jensen J, Serup P, Karlsen C, Nielsen TF, Madsen OD (1996) mRNA profiling of rat islet tumors reveals nkx 6.1 as a beta-cell-specific homeodomain transcription factor. J Biol Chem 271:18749–18758

    Article  PubMed  CAS  Google Scholar 

  44. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127:5533–5540

    PubMed  CAS  Google Scholar 

  45. Katz M, Carangelo R, Miller LJ, Gorelick F (1996) Effect of ethanol on cholecystokinin-stimulated zymogen conversion in pancreatic acinar cells. Am J Phys 270:G171–G175

    CAS  Google Scholar 

  46. Wang AY, Ehrhardt A, Xu H, Kay MA (2007) Adnovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 15:255–263

    Article  PubMed  CAS  Google Scholar 

  47. Conlon TJ, Cossette T, Erger K, Choi YK, Clarke T, Scott-Jorgensen M, Song S, Campbell-Thompson M, Crawford J, Flotte TR (2005) Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Mol Ther 12:867–875

    Article  PubMed  CAS  Google Scholar 

  48. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD, Powell S, Keller T, McMurray M, Labelle A et al (2006) Multi-year therapeutic benefit of AAV serotypes 2, 6 and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 108:107–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. I. Rofiq and H. Watada for gifts of pdx-1 construct and Professor Christopher V. E. Wright for gifts of polyclonal anti-rabbit pdx-1 antibody. This study was supported by the RGC Grant HKU 7368/02M to R. Xu and K. S. Lam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruian Xu.

Additional information

Hua Li and Xinyan Li equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, X., Lam, K.S.L. et al. Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats. J Biomed Sci 15, 487–497 (2008). https://doi.org/10.1007/s11373-008-9233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-008-9233-3

Keywords

Navigation