Skip to main content
Log in

Glucose metabolism in human gliomas: Correspondence ofin situ andin vitro metabolic rates and altered energy metabolism

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The rates of disappearance of glucose from the medium of 13 human glioma-derived cell lines and one cultured of normal human cortical astrocytes were determined by ftuorometric techniques. High-grade glioma-derived cultures showed a range of glucose consumption between 1 and 5 nmol/min/mg protein. Normal astrocyte cultures and cultures derived from grades I–III gliomas had a glucose consumption rate of 2–3 nmol/min/mg protein. Seven high-grade glioma lines were derived from surgical samples taken from patients who had been scanned by18F-2-deoxy-d-glucose positron computed tomography. The rate of glucose consumption in these high-grade glioma-derived lines was close to the maximum local cerebral metabolic rate for glucose (LCMRglc) measuredin situ in the tumors from which the cultures were derived. In cultured glioma-derived lines, approximately one-half of the glucose consumed was recovered as lactate and pyruvate, suggesting a reliance of glioma cells on aerobic glycolysis. ATP and phosphocreatine (PCr) levels were variable in the gliomaderived lines, and ATP was lower in the glioma-derived lines than in the normal astrocytes. Levels and regulation of glycogen differed significantly among the various glioma-derived cell lines. Glycogen content did not diminish as glucose was consumed, suggesting that glycogen utilization is not tightly regulated by the glucose metabolic rate. These results suggest that human glioma-derived cell cultures (1) adequately reflect the metabolic capacity of gliomasin situ and (2) are significantly altered in several aspects of their glycolytic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, N. (1957). Cytochrome oxidase in human brain tumors.J. Neurochem. 2: 37–44.

    Google Scholar 

  • Allen, N. (1982). Oxidative metabolism of brain tumors.Prog. Exp Tumor Res. 17: 192–209.

    Google Scholar 

  • Bennett, M. J., Ogilvy, K. M., Blake, G. M., Lewtas, N., and Timperley, W. R. (1976). A study of the glycolytic and pentose phosphate shunt enzymes in relationship to the altered permeability of the blood-brain barrier.J. Neurochem. 26: 1139–1143.

    Google Scholar 

  • Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, B., Mahaley, M. S., Ruoslahti, E., Herschman, H., Eng, L. F., and Wikstrand, C. J. C. (1981). Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas.J. Neuropathol. Exp. Neurol. 40: 201–229.

    Google Scholar 

  • Black, P. McL., Kornblith, P. L., Davison, P. F., Liszczak, T. M., Merk, L. P., Smith, B. H., McKeever, P. E., and Quindlen, E. A. (1982). Immunological, biochemical, ultrastructural and electrophysiological characteristics of a human glioblastoma-derived cell culture line.J. Neurosurg. 56: 62–72.

    Google Scholar 

  • Brierley, J. B., and McIlwain, H. (1956). Metabolic properties of cerebral tissues modified by neoplasia and by freezing.J. Neurochem. 1: 109–118.

    Google Scholar 

  • Coleman, M. T., and Allen, N. (1978). The hexose monophosphate pathway in ethylnitrosourea induced tumors of the nervous system.J. Neurochem. 30: 83–89.

    Google Scholar 

  • Cummins, C. J., Lust, W. D., and Passonneau, J. V. (1983a). Regulation of glycogen metabolism in primary and transformed astrocytes in vitro.J. Neurochem. 40: 128–136.

    Google Scholar 

  • Cummins, C. J., Lust, W. D., and Passonneau, J. V. (1983b). Regulation of glycogenolysis in transformed astrocytesin vitro. J. Neurochem.40: 137–144.

    Google Scholar 

  • Cummins, C. J., Smith, B. H., and Kornblith, P. L. (1984). Biochemistry of brain tumors. In Wilkins, R. H., and Rengachery, S. S. (eds.),Neurosurgery, Chap. 56, McGraw-Hill, New York, pp. 472–494.

    Google Scholar 

  • DeLaPaz, R., Di Chiro, G., Smith, B. H., Kornblith, P. L., Quindlen, E. A., Sokoloff, L., Brooks, R. A., Kessler, R. M., Johnston, G. S., Manning, R. G., Flynn, R. M., Wolf, A. P., Fowler, J. S., Brill, B., Blasberg, R. G., London, W. T., Sever, J. L., Kufta, C. V., Reith, K. G., Goble, J. C., and Cummins, C. J. (1981). [18F]-2-fluoro-2-deoxyglucose positron emission tomography of human cerebral gliomas.Abstr. Am. Assoc. Neurol. Surg. 29: 30.

    Google Scholar 

  • Di Chiro, G., DeLaPaz, R. L., Brooks, R., Sokoloff, L., Kornblith, P. L., Smith, B. H., Patronas, N. J., Kufta, C. V., Kessler, R. M., Johnston, G. S., Manning, R. G., and Wolf, A. P. (1982). Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography.Neurology 32: 1323–1329.

    Google Scholar 

  • Dominguez, J. E., Graham, J. F., Cummins, C. J., Loreck, D. J., Van der Feen, J., Galarraga, J., DeLaPaz, R., and Smith, B. H. (1987). Enzymes of glucose metabolism in cultured human gliomas: Neoplasia is accompanied by altered hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenase levels.Metab. Brain Dis. (in press).

  • Ereci, N. M., and Silver, I. A. (1986). The role of glial cells in regulation of neorotransmitter amino acids in the external environment. I. Transmembrane electrical and ion gradients and energy parameters in cultured glial-derived cell lines.Brain Res. 26: 193–202.

    Google Scholar 

  • Grumberger, G., Lowe, W. L., Jr., McElduff, A., and Glick, R. P. (1986). Insulin receptor of human cerebral gliomas: Structure and function.J. Clin. Invest. 77(3): 997–1005.

    Google Scholar 

  • Heller, I. H., and Elliot, K. A. C. (1955). The metabolism of normal brain and human gliomas in relationship to cell type and density.Can. J. Biochem. Physiol. 33: 395–403.

    Google Scholar 

  • Kennedy, P. G. E., Lisak, R. P., and Raff, M. C. (1980). Cell type specific markers for human glial and neuroglial cells in culture.Lab. Invest. 43: 342–351.

    Google Scholar 

  • Kirsch, W. M. (1965). Substrates of glycolysis in intracranial tumors during complete ischemia.Cancer Res. 25: 432–439.

    Google Scholar 

  • Kirsch, W. M., and Leitner, J. W. (1967). A comparison of the anaerobic glycolysis of human brain and glioblastoma.J. Neurosurg. 27: 45–51.

    Google Scholar 

  • Kornblith, P. L. (1978). Role of tissue culture in prediction of malignancy.Clin. Neurosurg. 25: 346–376.

    Google Scholar 

  • Kornblith, P. L. (1980). Role of tissue culture in prediction of malignancy.Clin. Neurosurg. 23: 346–376.

    Google Scholar 

  • Kornblith, P. L., and Szypko, P. (1978). Variations in response to human brain tumors to BCNUin vitro. J. Neurosurg.48: 580–586.

    Google Scholar 

  • Levin, V. A., Freeman-Dove, M., and Landahl, H. D. (1975). Permeability characteristics of brain adjacent to tumors in rats.Arch. Neurol. 32: 785–791.

    Google Scholar 

  • Loreck, D. J., Cummins, C. J., Van de Feen, J., Galarraga, nJ., Phang, J. M., and Smith, B. H. (1987). Regulation of the pentose phosphate pathway in human astrocytes and gliomas.Metab. Brain Dis. (in press).

  • Lowry, O. H., and Passonneau, J. V. (1972).A Flexible System of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N., Farr, A. L., and Randall, R. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W. (1964). Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239: 18–30.

    Google Scholar 

  • Lowry, O. H., Berger, S. J., Chi, M. M.-Y., Carter, J. G., Blackshaw, A., and Outlaw, W. (1977). Diversity of metabolic patterns in human brain tumors. I. High energy phosphate compounds and basic composition.J. Neurochem. 29: 959–977.

    Google Scholar 

  • Lowry, O. H., Berger, S. J., Carter, J. G., Chi, M. M.-Y., Manchester, J. K., Knor, J., and Pusateri, M. E. (1983). Diversity of metabolic patterns in human brain tumors: Enzymes of energy cofactors.J. Neurochem. 41: 994–1010.

    Google Scholar 

  • Lund-Andersen, H. (1979). Transport of glucose from blood to brain.Physiol. Rev. 59: 305–352.

    Google Scholar 

  • Lust, W. D., Schwartz, J. P., and Passonneau, J. V. (1975a). Glycolytic metabolism in cultured cells of the nervous system. I. Glucose transport and metabolism in the C-6 glioma cell line.Mol. Cell. Biochem. 8: 169–176.

    Google Scholar 

  • Lust, W. D., Passonneau, J. V., and Crites, S. (1975b). The measurement of glycogen in tissue by amyloalpha-1,4-alpha-1,6 glucosidase after destruction of preexisting glucose.Anal. Biochem. 68: 328–331.

    Google Scholar 

  • Mahaley, M. S. (1966). Thein vitro respiration of normal brain and brain tumors.Cancer Res. 26: 195–197.

    Google Scholar 

  • Naruse, S., Horikawa, Y., Tanaka, C., Higuchi, T., Ueda, S., Hirakawa, K., Nishikawa, H., and Watari, H. (1985). Observations of energy metabolism in neuroectodermal tumors usingin vivo 31P-NMR.Magnet. Reson. Imag. 3(2): 117–123.

    Google Scholar 

  • Passonneau, J. V., Schwartz, J. P., and Lust, W. D. (1978). Some aspects of the intermediary metabolism of glioma cells in culture. In Schoffeniels, E.,et. al. (eds.),Dynamic Properties ofGlia Cells in Culture, Pergamon Press, Oxford, pp. 133–142.

    Google Scholar 

  • Perria, L., Viale, G., Ibba, F., Andreussi, L., and Viale, E. (1964). Istocitochimica dei tumori endocranici.Neuropsichiatria 20: 419–523.

    Google Scholar 

  • Ponten, J. (1975). Neoplastic human glia cells in culture. In Fogh, J. (ed.),Human Tumor Cells in Vitro, Plenum Press, New York, pp. 175–204.

    Google Scholar 

  • Ponten, J., and Westermark, B. (1978). Properties of human malignant glioma cellsin vitro. Med. Biol.56: 184–193.

    Google Scholar 

  • Schwartz, J. P., and McCandless, D. W. (1976). Glycolytic metabolism in cultured cells of the nervous system. IV. The effects of thiamine deficiency on thiamine levels, metabolites and thiamine-dependent enzymes of the C-6 glioma and C-1300 neuroblastoma cell lines.Mol. Cell. Biochem.13: 49–52.

    Google Scholar 

  • Schwartz, J. P., Lust, W. D., Lauderdale, V. R., and Passonneau, J. V. (1975). Glycolytic metabolism in cultured cells of the nervous system. II. Regulation of pyruvate and lactate metabolism in the C-6 glioma cell line.Mol. Cell. Biochem. 9: 67–72.

    Google Scholar 

  • Steel, G. G. (1980). Growth kinetics of brain tumors. In Thomas, D. G. T., and Graham, D. I. (eds.),Brain Tumors. Scientific Basis, Clinical Investigation and Current Therapy, Butterworth, Boston, pp. 10–20.

    Google Scholar 

  • van Veelen, C. W. M., Verbiest, H., Zulch, K. J., van Ketel, B., van der Vlist, M. J. M., Vlug, A. M. C., Rijksen, G., and Staal, G. E. (1979). L-Alpha-alanine inhibition of pyruvate kinase from tumors of the human central nervous system.Cancer Res. 39: 4263–4269.

    Google Scholar 

  • van Veelen, C. W. M., Verbiest, H., Zulch, K. J., van Ketel, B., van der Vlist, M. J. M., and Vlug, A. M. C. (1982). Pyruvate kinase in human brain tumors. Significance in the treatment of gliomas.Acta Neurochirug. 61: 145–159.

    Google Scholar 

  • Viale, F. L. (1980). Biochemical patterns in brain tumors. II. Enzymes of the tricarboxylic cycle.Acta Neurochir.20: 273–279.

    Google Scholar 

  • Victor, J. V., and Wolf, A. (1937). Metabolism of brain tumors.Proc. Assoc. Res. Nerv. Ment. Dis. 16: 44–58.

    Google Scholar 

  • Warburg, O. (1956). On the origin of cancer cells.Science 123: 309–315.

    Google Scholar 

  • Weber, G. (1977). Enzymology of cancer cells.N. Engl. J. Med. 296: 486–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galarraga, J., Loreck, D.J., Graham, J.F. et al. Glucose metabolism in human gliomas: Correspondence ofin situ andin vitro metabolic rates and altered energy metabolism. Metabolic Brain Disease 1, 279–291 (1986). https://doi.org/10.1007/BF00999357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999357

Key words

Navigation