Skip to main content

Advertisement

Log in

Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aims of this research were to (i) systematically investigate the soil organic carbon (SOC) and labile SOC fraction dynamics over a period of 3 years under biochar amendment, (ii) reveal the relations of labile SOC fractions to SOC, and (iii) evaluate the sensitivity of SOC to biochar added at different rates by determining C pool management index (CPMI).

Materials and methods

The SOC, labile SOC fractions, and the CPMI in the 0–20-cm layer were analyzed via a 3-year field experiment of maize. Four biochar treatments were studied, with application rates of 0, 15.75, 31.5, and 47.25 t ha−1 (CK, BC1, BC2, and BC3, respectively). Biochar was applied manually before sowing only in the first year of this experiment; an equal mineral NPK fertilizer was applied to each treatment annually.

Results and discussion

The average data of this 3-year field study demonstrated that biochar incorporation significantly increased SOC, particulate organic carbon (POC), easily oxidizable carbon (EOC), light fraction organic carbon (LFOC), and microbial biomass carbon (MBC) by 31.75–83.62, 92.72–323.30, 29.90–51.55, 194.30–437.37, and 31.13–93.12%, respectively, compared to the control; their concentrations increased with increasing biochar addition rates, except for MBC. In addition, EOC, POC, and LFOC were significantly positively related with SOC. Compared to the control, the DOC contents were reduced after biochar addition, but the specific reasons for this finding need to be further studied.

Conclusions

Biochar incorporation could not only significantly improve the soil quality via increasing the soil organic C fractions, but also increase C sequestration rates in the long term by increasing the non-labile C pool (NLC). The CPMI could be used as a representative index in evaluating the impacts of biochar on SOC content and soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

This study was funded by the Special Fund for Agro-scientific Research in the Public Interest of China (No. 201503136 and No. 201303095), the National Natural Science Foundation of China (No. 41401325), Program for Science and technology plan of Shenyang (17-182-9-00). We would like to thank the anonymous reviewers and the editor for their constructive comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lan.

Additional information

Responsible editor: Yong Sik Ok

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, D., Lan, Y. et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J Soils Sediments 18, 1569–1578 (2018). https://doi.org/10.1007/s11368-017-1874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1874-2

Keywords

Navigation