Skip to main content
Log in

Approach to the potential usage of two wood ashes waste as soil amendments on the basis of the dehydrogenase activity and soil oxygen consumption

  • Reclamation and Management of Polluted Soils: Options and Case Studies
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

We investigated the effect that ashes may have on the soil microbial activity. Our hypothesis is that different wood ashes and different proportions of them could have beneficial or detrimental effects depending on the applied dose.

Materials and methods

Dehydrogenase activity and soil oxygen consumption were used to evaluate the potential improvement of soil conditions through the application of two different wood ashes coming from industrial waste. Different ash proportions and time dependence have been used to make comparisons. The respiration curves obtained through a closed-jar incubation experiment were well fitted by a sigmoidal function, the derivative of which yields the time evolution of the consumption rate.

Results and discussion

The results indicate that the dehydrogenase activity and soil oxygen consumption are very sensitive to the presence of ashes in the soil, and the reached values of both are linked to the applied dose of them. In our research, soil oxygen consumption is time and rate dependent of ash application. The curves show that parameter was affected by the ashes in different way, raising the respiration rate, and stretching the biological activity period.

Conclusions

Dehydrogenase activity and soil oxygen consumption are very sensitive to the presence of ashes and can be used to assess their potential use as amendments. The results of this paper can contribute to the required knowledge in order to use ashes in a sustainable way. Ashes coming from olive marc and vine shoots may affect positively the soil respiration and, therefore, the soil fertility, if they are applied in moderate amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano DC, Weber JT (2001) Influence of fly ash on soil physical properties and turf grass establishment. J Environ Qual 30:596–601

    Article  CAS  Google Scholar 

  • Adriano DC, Page AL, Elseewi AA et al (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J Environ Qual 9:333–344

    Article  CAS  Google Scholar 

  • Anderson OR (2011) Soil respiration, climate change and the role of microbial communities. Protist News 162:679–690

    Article  Google Scholar 

  • Bååth E, Frostegård Å, Pennanen T et al (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilizer, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240

    Article  Google Scholar 

  • Barajas M (2008) Ensayos de metabolismo microbiano en suelo: actividad deshidrogenasa y tasa de mineralización del nitrógeno. In: Ramírez P, Mendoza A (eds) Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: la experiencia en México. Inst Nac Ecol, México, pp 291–303

    Google Scholar 

  • Brzezińska M, Stępniewska Z, Stępniewski W (1998) Soil oxygen status and dehydrogenase activity. Soil Biology Biochem 30:1783–1790

    Article  Google Scholar 

  • Casida LE (1977) Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl Environ Microbiol 34:630–636

    CAS  Google Scholar 

  • Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chowdhury N, Burns RG, Marschner P (2011) Recovery of soil respiration after drying. Plant Soil 348:269–279

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1986) Council directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. Eur. Community L181, 6–12 (Annex 1 A)

  • Daniel DW, Smith LM, Belden JB et al (2015) Effects of land-use change and fungicide application on soil respiration in playa wetlands and adjacent uplands of the US High Plains. Sci Total Environ 514:290–297

    Article  CAS  Google Scholar 

  • Deborah BV, Mohiddin MJ, Madhuri RJ (2013) Interaction effects of selected pesticides on soil enzymes. Toxicol Int 20:195–200

    Article  Google Scholar 

  • Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1979) Effects of lead on the soil bacterial microflora. Soil Biol Biochem 11:487–491

    Article  CAS  Google Scholar 

  • Dong YJ, Cai M, Liang B, Zhou J-B (2013) Effect of additional carbonates on CO2 emission from calcareous soil during the closed-jar incubation. Pedosphere 23:137–142

    Article  Google Scholar 

  • Etiegni L, Campbell AG (1991) Physical and chemical characteristics of wood ash. Bioresour Technol 37:173–178

    Article  CAS  Google Scholar 

  • Fiedler SR, Buczko U, Jurasinski G et al (2015) Soil respiration after tillage under different fertilizer treatments–implications for modelling and balancing. Soil Till Res 150:30–42

    Article  Google Scholar 

  • Füzesi I, Heil B, Kovács G (2015) Effects of wood ash on the chemical properties of soil and crop vitality in small plot experiments. Acta Silv Lign Hung 11:55–64

    Google Scholar 

  • Garau MA, Dalmau JL, Felipo MT (1991) Nitrogen mineralization in soil amended with sewage sludge and fly ash. Biol Fertil Soils 12:199–201

    Article  CAS  Google Scholar 

  • García C, Gil F, Hernández T (2003) Técnicas de análisis de parámetros bioquímicos en suelos:medida de actividades enzimáticas y biomasa microbiana. Ed. Mundi-Prensa Libros. Madrid–Spain

  • Ghosh RK, Singh N, Singh SB (2016) Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils. Environ Monit Assess 188:482

    Article  Google Scholar 

  • Guillamot F, Calvert V, Millot MV et al (2014) Does antimony affect microbial respiration in Mediterranean soils? A microcosm experiment. Pedobiol- J Soil Ecol 57:119–121

    Article  Google Scholar 

  • Guiller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  Google Scholar 

  • Hassan W, Akmal M, Muhammad I et al (2013) Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Aus J Crop Sci 7:674–680

    CAS  Google Scholar 

  • Hollender J, Althoff K, Mundt M et al (2003) Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere 53:269–275

    Article  CAS  Google Scholar 

  • Huotari N, Tillman-Sutela E, Moilanen M et al (2015) Recycling of ash—For the good of the environment? Forest Ecol Manag 348:226–240

    Article  Google Scholar 

  • Hytönen J (2003) Effects of wood, peat and coal ash fertilization on Scots pine foliar nutrient concentrations and growth on afforested former agricultural peat soils. Silva Fennica 37:219–234

    Article  Google Scholar 

  • Klose S, Acosta-Martínez V, Ajwa HA (2006) Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol Biochem 38:1243–1254

    Article  CAS  Google Scholar 

  • Klubek B, Carlson CL, Oliver J et al (1992) Characterization of microbial abundance and activity from three coal ash basins. Soil Biol Biochem 24:1119–1125

    Article  Google Scholar 

  • Kuba T, Tschöll A, Partl C et al (2008) Wood ash admixture to organic wastes improves compost and its performance. Agric Ecosys Environ 127:43–49

    Article  Google Scholar 

  • Marín ML, Aragón P, Gómez C (2002) Análisis químicos de suelos y, aguas. edn. Universidad Politécnica de Valencia

  • Moilanen M, Silfverberg K, Hokkanen TJ (2002) Effects of wood-ash on the tree growth, vegetation and substrate quality of a drained mire: a case study. Forest Ecol Manag 171:321–338

    Article  Google Scholar 

  • Montejo M, Torres CP, Martínez A et al (2012) Técnicas para el análisis de actividad enzimática en suelos. In: Cuevas MC, Espinosa G, Ilizaliturri C, Mendoza A (eds) Madrid

  • Nwachukwu OI, Pulford ID (2011) Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. J Hazard Mater 185:1140–1147

    Article  CAS  Google Scholar 

  • Nwaogu LA, Ujowundu CO, Iheme CI et al (2014) Effect of sublethal concentration of heavy metal contamination on soil physicochemical properties, catalase and dehydrogenase activities. Inter J Biochem Res 4:141–149

    Article  Google Scholar 

  • Nweke CO, Ntinugwa C, Obah IF et al (2007) In vitro effects of metals and pesticides on dehydrogenase activity in microbial community of cowpea (Vigna unguiculata) rhizoplane. African J Biotech 6:290–295

    CAS  Google Scholar 

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosys Environ 136:16–27

    Article  Google Scholar 

  • Parkin TB, Doran JW, Franco-Vizcaíno E (1996) Field and laboratory tests of soil respiration. In: Doran JW, Jones AJ (eds) Methods for Assessing Soil Quality. Soil Sci Soc Am, Madison

    Google Scholar 

  • Pati SS, Sahu SK (2004) CO2 evaluation and enzyme activities (dehydrogenase, protease and amylase) of fly ash amended soil in presence and absence of earthworms (under laboratory condition). Geoderma 118:289–301

    Article  CAS  Google Scholar 

  • Perucci P, Monaci E, Casucci C et al (2006) Effect of recycling wood ash on microbiological and biochemical properties of soils. Agron Sustain Dev 26:157–165

    Article  CAS  Google Scholar 

  • Perucci P, Monaci E, Onofri A et al (2008) Changes in physico-chemical and biochemical parameters of soil following addition of wood ash: a field experiment. Eur J Agron 28:155–161

    Article  CAS  Google Scholar 

  • Pichtel JR (1990) Microbial respiration in fly ash/sewage sludge amended soils. Environ Pollut 63:225–237

    Article  CAS  Google Scholar 

  • Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79:563–588

    Article  Google Scholar 

  • Ram LC, Masto RE (2014) Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments. Earth-Sci Rev 128:52–74

    Article  CAS  Google Scholar 

  • Ramos E, Zúñiga D (2008) Efecto de la humedad, temperatura y pH del suelo en la actividad microbiana a nivel de laboratorio. Ecol Aplicada 7:123–130

    Article  Google Scholar 

  • Salazar S, Sanchez L, Alvarez J et al (2011) Correlation among soil enzyme activities under different forest system management practices. Ecol Eng 37:1123–1131

    Article  Google Scholar 

  • Schutter M, Dick R (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33:1481–1491

    Article  CAS  Google Scholar 

  • Seshadri B, Bolan NS, Kunhikrishnan A (2013) Effect of clean coal combustion products in reducing soluble phosphorus in Soil I. Adsorption Study Water Air Soil Pollut 224:1524

    Article  Google Scholar 

  • Smith SN, Pugh GJF (1979) Evaluation of dehydrogenase as a suitable indicator of soil microflora activity. Enzyme Micr Tech 1:279–281

    Article  CAS  Google Scholar 

  • USDA (1954) Diagnosis and improvement of saline and alkaline soils. Agriculture Handbook. N°60 L.A.Richards (ed) 160 p

  • Welp G (1999) Inhibitory effects of the total and water–soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fert Soils 30:132–139

    Article  CAS  Google Scholar 

  • Włodarczyk T, Księżopolska A, Gliński J (2008) New aspect of soil respiration activity measuring. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego OL PAN 5:153–163

  • Wong MH, Wong WC (1986) Effects of fly ash on soil microbial activity. Environ Pollut 40:127–144

    Article  CAS  Google Scholar 

  • Xiong D, Li Y, Xiong Y et al (2014) Influence of Boscalid on the activities of soil enzymes and soil respiration. Eur J Soil Biol 61:1–5

    Article  CAS  Google Scholar 

  • Yuan B, Yue D (2012) Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the loess plateau of China. Pedosphere 22:1–12

    Article  CAS  Google Scholar 

  • Zimmermann S, Frey B (2002) Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol Biochem 34:1727–1737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to the support provided by the Almaden School of Mines (UCLM) and Ciudad Real School of Agronomic Engineers (UCLM).

Funding

This study has been partly funded by project CGL2015-67644-R (Spanish Ministry of Economy and Competitiveness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Campos.

Additional information

Responsible editor: Elena Korobova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, J.A., Peco, J.D., De Toro, J.A. et al. Approach to the potential usage of two wood ashes waste as soil amendments on the basis of the dehydrogenase activity and soil oxygen consumption. J Soils Sediments 18, 2148–2156 (2018). https://doi.org/10.1007/s11368-017-1840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1840-z

Keywords

Navigation