Skip to main content
Log in

Human health characterization factors of nano-TiO2 for indoor and outdoor environments

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The increasing use of engineered nanomaterials (ENMs) in industrial applications and consumer products is leading to an inevitable release of these materials into the environment. This makes it necessary to assess the potential risks that these new materials pose to human health and the environment. Life cycle assessment (LCA) methodology has been recognized as a key tool for assessing the environmental performance of nanoproducts. Until now, the impacts of ENMs could not be included in LCA studies due to a lack of characterization factors (CFs). This paper provides a methodological framework for identifying human health CFs for ENMs.

Methods

The USEtox™ model was used to identify CFs for assessing the potential carcinogenic and non-carcinogenic effects on human health caused by ENM emissions in both indoor (occupational settings) and outdoor environments. Nano-titanium dioxide (nano-TiO2) was selected for defining the CFs in this study, as it is one of the most commonly used ENMs. For the carcinogenic effect assessment, a conservative approach was adopted; indeed, a critical dose estimate for pulmonary inflammation was assumed.

Results and discussion

We propose CFs for nano-TiO2 from 5.5E−09 to 1.43E−02 cases/kgemitted for both indoor and outdoor environments and for carcinogenic and non-carcinogenic effects.

Conclusions

These human health CFs for nano-TiO2 are an important step toward the comprehensive application of LCA methodology in the field of nanomaterial technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A, Nowack B (2014) Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environ Sci Technol 48:6710–6718

    Article  CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Challenges in exposure modeling of nanoparticles in aquatic environments. Hum Ecol Risk Assess 17(1):245–262

    Article  CAS  Google Scholar 

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    Article  CAS  Google Scholar 

  • Bessems JG, Loizou G, Krishnan K, Clewell HJ III, Bernasconi C, Bois F, Coecke S, Collnot E-M, Diembeck W, Farcal LR, Liesbeth G, Gundert-Remy U, Kramer N, Küsters G, Leite SB, Pelkonen OR, Schöder K, Testai E, Zasadna IW, Zaldívar-Comenges JM (2014) PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment: recommendations from a joint EPAA–EURL ECVAM ADME workshop. Regul Toxicol Pharmacol 68(1):119–139

    Article  CAS  Google Scholar 

  • Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2):120–127

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  • DPR MT-2. Guidance for Benchmark Dose (BMD) Approach-continuous data. (2004) Medical Toxicology Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA

  • Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotubes. Environ Sci Technol 46:2902–2910

    Article  CAS  Google Scholar 

  • Everitt JI, Mangu JB, Bermudez E, Wong BA, Asgharian B, Reverdy EE, Hext PM, Warheit DB (2000) Comparison of selected pulmonary responses of rats, mice and Syrian golden hamsters to inhaled pigmentary titanium dioxide. Inhal Toxicol 12(Suppl 3):275–282

    Article  CAS  Google Scholar 

  • Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E et al (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS ONE 10(5), e0127174. doi:10.1371/journal.pone.0127174

    Article  Google Scholar 

  • Garcia GR, Zimmermann B, Weil M (2014) Nanotoxicity and life cycle assessment: first attempt towards the determination of characterization factors for carbon nanotubes. IOP Conf. Series: Material Science and Engineering, 64. doi:10.1088/1757-899X/64/1/012029

  • Garner K, Keller A (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanoparticle Res 16:1–28

    Article  Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7(4):533–556

    Article  CAS  Google Scholar 

  • Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MA, McKone TE (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43(6):1670–1679

    Article  CAS  Google Scholar 

  • Henderson AD, Hauschild MZ, van de Meent D, Huijbregts MAJ, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J LCA 16(8):701–709. doi:10.1007/s11367-011-0294-6

  • Hirsch C, Roesslein M, Krug HF, Wick P (2011) Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine 6(5):837–847

    Article  CAS  Google Scholar 

  • Hischier R (2014) Framework for LCI modelling of nanoparticle releases along the life cycle. Int J Life Cycle Assess 19(4):838–849

    Article  CAS  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282

    Article  CAS  Google Scholar 

  • Hischier R, Nowack B, Gottschalk F, Hincapie I, Steinfeldt M, Som C (2015) Life cycle assessment of façade coating systems containing manufactured nanomaterials. J Nanoparticle Res. doi:10.1007/s11051-015-2881-0

    Google Scholar 

  • Hofstetter P (1998) Perspectives in life cycle impact assessment: a structured approach to combine models of the technosphere, ecosphere and valuesphere. Kluwer, Dordrecht, p 484

    Book  Google Scholar 

  • Huijbregts MA, Rombouts LJ, Ragas AM, van de Meent D (2005) Human‐toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manag 1(3):181–244

    Article  CAS  Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45(11):4808–4816

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508

    CAS  Google Scholar 

  • JRC-IES (European Commission-Joint Research Centre-Institute for Environment and Sustainability) (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833

    Article  CAS  Google Scholar 

  • Kaiser J-P, Roesslein M, Diener L, Wick P (2013) Human health risk of ingested nanoparticles that are added as multifunctional agents to paints: an in vitro study. PLoS One 8, e83215

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Krishnan K, Peyret T (2009) Physiologically based toxicokinetic (PBTK) modeling in ecotoxicology. In: Devillers J (ed) Ecotoxicology modeling, Dordrecht, pp 145–175

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278

    Article  CAS  Google Scholar 

  • Kuhlbusch TA, Asbach C, Fissan H, Göhler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8(1):22

    Article  Google Scholar 

  • Landsiedel R, Ma‐Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal‐oxide nanomaterials for human safety. Adv Mater 22(24):2601–2627

    Article  CAS  Google Scholar 

  • Landsiedel R, Ma-Hock L, Hofmann T et al (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16

    Article  Google Scholar 

  • Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH, Yu IJ (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23(4):226–236

    Article  CAS  Google Scholar 

  • Liu H, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48:3281–3292

    Article  CAS  Google Scholar 

  • Meesters JAJ, Koelmans AA, Quik JTK, Hendriks AJ, van de Meent D (2014) Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ Sci Technol 48:5726–5736

    Article  CAS  Google Scholar 

  • Mikkelsen SH, Hansen E, Boe Christensen T (2011) Survey on basic knowledge about exposure and potential environmental and health risks for selected nanomaterials. Danish Ministry of the Environment–Environmental Protection Agency. Environmental Project 1370. See http://www.nfp64.ch/SiteCollectionDocuments/nfp64_publikationen_mikkelsen.pdfMueller NC

  • Miseljic M, Olsen SI (2014) Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanoparticle Res 16(6):1–33

    Article  CAS  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2011) Occupational exposure to titanium dioxide. In Current Intelligence Bulletin 63

  • Notter D (2015) Life cycle impact assessment modeling for particulate matter: a new approach based on physico-chemical particle properties. Environ Int 82:10–20

    Article  CAS  Google Scholar 

  • Pini M, Gamberini R, Neri P, Rimini B, Ferrari AM (2012) Life cycle assessment of a self-cleaning coating based on nano TiO2-polyurea resin applied on an aluminum panel (n°O8a-7). International Conference on Safe production and use of nanomaterials, Nanosafe, November 13-15, 2012, Grenoble, France

  • Pini M, Cedillo González EI, Neri P, Siligardi C, Ferrari AM (2013) Life cycle assessment of nanoTiO2 coated self-cleaning float glass (n°1256). Proceeding of Nanotech, May 12 – 16, 2013, Washington DC, US. ISBN 978-1-4822-0604-3

  • Pini M, Neri P, Montecchi R, Ferrari AM (2014) Life cycle assessment of nano-TiO2 functionalized porcelainized stoneware tiles. Proceedings of the 247th ACS National Meeting, March 16 – 20, Dallas, TX, US. www.acs.org/dallas2014

  • Pini M, Rosa R, Neri P, Bondioli F, Ferrari AM (2015) Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem 17(1):518–531

    Article  CAS  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles: a case study of TiO2 nanoparticles in the Rhine River. Environ Sci Technol 46(12):6705–6713

    Article  CAS  Google Scholar 

  • Praetorius A, Tufenkji N, Goss K-U, Scheringer M, von der Kammer F, Elimelech M (2014) The road to nowhere: equilibrium partition coefficients for nanoparticles. Environ Sci: Nano 1:317–323

    CAS  Google Scholar 

  • Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33:624–634

    Article  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschil MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Huijbregts MAJ, Henderson AD, Margni M, McKone TE, van de Meent D, Hauschild MZ, Shaked S, Li DS, Gold LS, Jolliet O (2011) USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16:710–727

    Article  CAS  Google Scholar 

  • Sala S, Marinov D, Anna K, Margni M, Humbert S, Olivier J, Shanna S, Pennington D (2011) Life cycle impact assessment of chemicals: relevance and feasibility of spatial differentiation for ecotoxicity and human toxicity impact assessment. Life Cycle Management Conference 2011. Available at http://www.lcm2011.org/papers.html

  • Salieri B, Righi S, Pasteris A, Olsen SI (2015) Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: a case study on titanium dioxide nanoparticle. Sci Total Environ 505:494–502

    Article  CAS  Google Scholar 

  • SCCS (Scientific Committee on Consumer Safety) (2013) Opinion on titanium dioxide (nano form)

  • SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2010) Opinion on the scientific basis for the definition of the term “nanomaterial”

  • Shi H, Magaye R, Castranov V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi:10.1186/1743-8977-10-15

    Article  CAS  Google Scholar 

  • Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7(1):1

  • Smulders S, Luyts K, Brabants G, Landuyt KV, Kirschhock C, Smolders E, Golanski L, Vanoirbeek J, Hoet PH (2014) Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci 141:132–140

    Article  CAS  Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • USEtox™ Model (version 1.10 beta) (2013) http://www.usetox.org/model/download/usetox-model-version-110-beta. Accessed 8 July 2015

  • Walser T, Limbach LK, Brogioli R et al (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7(8):520–524

    Article  CAS  Google Scholar 

  • Walser T, Meyer D, Fransman W, Buist H, Kuijpers E, Brouwer D (2015) Life-cycle assessment framework for indoor emissions of synthetic nanoparticles. J Nanoparticle Res 17(6):1–18

    Article  CAS  Google Scholar 

  • Wang J, Fan Y (2014) Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci 15(12):22258–22278

    Article  CAS  Google Scholar 

  • Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115:187–194

    Article  CAS  Google Scholar 

  • Xu X, Zhou X, Ma L, Mo M, Ren C, Pan R (2014) One-step microemulsion-mediated hydrothermal synthesis of nanocrystalline TiO2. World J Nano Sci Eng 4:29–34

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Johannes J. Meesters, from IWWR (Netherlands), for his significant support and fruitful discussions throughout this paper’s preparation. Particular thanks go to Jean-Pierre Kaiser, from EMPA, and Pietro Fumagalli, from University of Milan-Bicocca, for their help in the field of toxicology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Pini.

Ethics declarations

This manuscript, entitled “Human health characterization factors of titanium dioxide nanoparticles for indoor and outdoor environments,” has been approved by all its authors. It has not been previously published, nor is it under consideration for publication elsewhere. No data or figures have been fabricated or manipulated to support our conclusions. No data or text prepared by others have been presented as if they were the authors’ own. Hence, the submission declaration has been complied with.

Conflict of interest

The authors declare that they have no conflicts of interest. This research involved no animals.

Additional information

Responsible editor: Stig Irving Olsen

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pini, M., Salieri, B., Ferrari, A.M. et al. Human health characterization factors of nano-TiO2 for indoor and outdoor environments. Int J Life Cycle Assess 21, 1452–1462 (2016). https://doi.org/10.1007/s11367-016-1115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1115-8

Keywords

Navigation