Skip to main content

Advertisement

Log in

Life-cycle assessment of engineered nanomaterials: a literature review of assessment status

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The potential environmental impacts of engineered nanomaterials (ENMs), and their engineered nanoparticles (ENPs), have, in recent years, been a cause of concern. Life-cycle assessment (LCA) is a highly qualified tool to assess products and systems and has an increasing extent been applied to ENMs. However, still only 29 case studies on LCA of ENMs have been published in journals and this article investigates these studies. Generally, data on production of ENMs as well as the coverage of the life cycle are limited. In particular, within use and disposal stages data are scarce due to many unknowns regarding the potential release and fate of ENMs/ENPs to and in the environment. This study investigates the sensitivity of case studies with respect to ecotoxicity impacts through a quantification of the potential ecotoxicity impacts to algae, daphnia and fish as a result of direct release of Ag and TiO2 ENPs (mainly <200 nm in nominal diameter size) from various ENM products to the freshwater compartment. It was found that Ag and TiO2 release, from 1 g Ag or TiO2 ENM product, poses up to ca. 3.5 orders of magnitude higher ecotoxicity impact than the production of 1 g polymer (PP, PE and PET average) or 1 Wh of grid mix electricity from Scandinavia. ENMs from Ag had higher ecotoxic impact than those from TiO2 and there was a linear regression between Ag ENM content in the considered products and the potential ecotoxicity impacts to the freshwater species, according to release of total Ag during use (mainly washing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Althaus H-J, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A (2003) Life Cycle Inventories of Chemicals. Final report ecoinvent 2000 No. 8. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, Zürich, Switzerland. http://www.poli.br/~cardim/PEC/Ecoinvent%20LCA/ecoinventReports/08_Chemicals.pdf. A slightly newer version from 2007, Accessed 5 October 2013

  • Amatayakul W (1999) Life cycle assessment of a catalytic converter for passenger cars. Master Thesis. Dept. of Chemical Environmental Science Chalmers University of Technology. Goteborg. Sweden

  • Amatayakul W, Ramnäs O (2001) Life cycle assessment of a catalytic converter for passenger cars. J Clean Prod 9(5):395–403(9)

    Google Scholar 

  • Andersen PJ, and Ballinger TH (1999) Improvements in Pd:Rh and Pt:Rh three way catalysts. Society of Automotive Engineers Technical Paper 1999-01-0308. doi:10.4271/1999-01-0308

  • Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aquwous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5:1545–1551

    Google Scholar 

  • APME (2000) Data collected by Boustead consulting: ecoprofiles of chemicals and polymers. APME Brussels.

  • Aridi TN, Al-Daous MA (2009) HDS of 4,6-dimethyldibenzothiophene over MoS2 catalysts supported on macroporous carbon coated with aluminosilicate nanoparticles. Appl Catal A 359(1–2):180–187

    Google Scholar 

  • Babaizadeh H, Hassan M (2012) Life cycle assessment of nano-sized titanium dioxide coating on residential windows. Constr Build Mater 40(March):314–321

    Google Scholar 

  • Ballari MM, Hunger M, Hüsken G, Brouwers HJH (2010) NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B 95(3–4):245–254

    Google Scholar 

  • Bartley G, Bykowski B, Welstand S, Lax D (1999) Effects of catalyst formulation on vehicle emissions with respect to gasoline fuel sulfur level. Society of Automotive Engineers Technical Paper 1999-01-3675. doi:10.4271/1999-01-3675

  • Batley EG, McLaughlin JM (2010) Fate of manufactured nanomaterials in the Australian environment. CSIRO Niche Manufacturing Flagship Report. Department of the Environment. Water. Heritage and the Arts. http://www.environment.gov.au/system/files/pages/371475a0-2195-496d-91b2-0a33f9342a6d/files/manufactured-nanomaterials.pdf. Accessed 5 October 2013

  • Bauer C, Burchgeister J, Hischier R, Poanietz WR, Schebek L, Warsen J (2008) Towards a framework for life cycle thinking in the assessment of nanotechnology. J Clean Prod 16(8–9):910–926

    Google Scholar 

  • Benn T, Cavnagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Google Scholar 

  • Berghaus JO, Legoux JG, Moreau C, Terasi F, Chrâska T (2007) Mechanical and thermal transport properties of suspension alumina-zirconia composite coatings. J Therm Spray Technol 17(1):91–104

    Google Scholar 

  • BLS (2011) Discount rate of nano TiO2 and glass window material. U.S. Bureau of Labor Statistics. http://www.bls.gov/cpi/home.htm. Accessed 11 November 2013

  • Brant J, Lecoanet H, Wiesner M (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553

    Google Scholar 

  • Braun J, Hauber T, Többen H, Windmann J, Zacke P, Chatterjee D, Correa C, Deutschmann O, Maier L, Tischer S, Warnatz J (2002) Three-dimensional simulation of the transient behavior of a three-way catalytic converter. Society of Automotive Engineers Technical Paper 2002-01-0065. doi:10.4271/2002-01-0065

  • Brisley RJ, Collins NR, French C, Morris D, Twigg MV (1999) Development of advanced platinum-rhodium catalyst for future emissions requirements. Society of Automotive Engineers Technical Paper 1999-01-3627. doi:10.4271/1999-01-3627

  • Burch SD, Keyser MA, Colucci CP, Potter TF, Benson DK, Biel JP (1996) Applications and benefits of catalytic converter thermal management. Society of Automotive Engineers Technical Paper 961134. doi:10.4271/961134

  • Buzea C, Blandino Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Department of Physics. Gastrointestinal Diseases Research Unit & Department of Physiology. Queens University at Kingston General Hospital. Kingston. Ontario. Canada. http://arxiv.org/pdf/0801.3280v1. Accessed 20 June 2013

  • Capello C, Hellweg S, Badertscher B, Betschart H, Hungerbühler K (2007) Environmental assessment of waste-solvent treatment options. J Ind Ecol 11(4):26–38

    Google Scholar 

  • Carnegie Mellon (2008) Economic input-output life cycle assessment (EIO-LCA). Carnegie Mellon University Green Design Institute (http://www.eiolca.net)

  • Cetinkunt S (2007) Mechatronics. John Wiley and Sons. Inc., Hoboken

    Google Scholar 

  • Cetinkunt S (2008) Mechanical engineering. Personal Communication. University of Illinois, Chicago (done by Sengül & Theis (2010))

    Google Scholar 

  • Chafik TOD, Gass JL, Bianchi D (1998) Heat of adsorption of carbon monoxide on a Pt/Rh/CeO2/Al2O3 three-way catalyst using in-Situ infrared spectroscopy at high temperatures. J Catal 179(2):503–514

    Google Scholar 

  • Chatterjee D, Deutschmann O, Warnatz J (2001) Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss 119:371–384

    Google Scholar 

  • Cheng F, Kelly SM (2010) Production of TiO2 by chemical precipitation, Personal communication by Manda et al. (2012). University of Hull. United Kingdom

  • Chilson M (2008) Telephone and E-mail Communication. ME Baker Inc. (done by Sengül & Theis (2010))

  • Consumersearch (2009) Laundry detergent: full report. http://www.consumersearch.com/laundry-detergent/best-laundry-detergent. Accessed 5 October 2013

  • Corbiere-Nicollier T, Laban BG, Lundquist L, Leterrier Y, Manson J-AE, Jolliet O (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Res Cons Recycl 33(4):267–287

    Google Scholar 

  • Cornelius SJ (2001) Modelling and Control of Automotive Catalysts. Ph.D. Dissertation. Sidney Sussex College. University of Cambridge. United Kingdom. http://library.certh.gr/libfiles/PDF/EKETA-1325-MODELING-AND-CONTROL-AUTOMOTIVE-CATALYSTS-CAM-AC-UK-Y2001-PP182-PhD-Thesis.pdf. Accessed 13 June 2013

  • Dahlben LJ, Isaacs JA (2009) Environmental assessment of manufacturing with carbon nanotubes. International symposium on sustainable systems and technology 2009 (ISSST). IEEE International Symposium on, vol., no., pp.1,5, 18–20 May 2009. doi: 10.1109/ISSST.2009.5156767

  • Dahlben LJ, Eckelman Jensen M, Hakimian A, Somu S, Isaacs JA (2013) Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device. Environ Sci Technol 47(15):8471–8478

    Google Scholar 

  • Dean KA, Coll BF, Talin AA, von Allmen PA, Wei Y, Rawlett AM et al (2005) Field emission display and methods of forming a field emission display. U.S. Patent 7,070,472 B2. Filed Oct. 25 2004, issued Jul. 4, 2006

  • Defra (2004) Environmental reporting guidelines for company reporting on greenhouse gas emissions. Department for Environment Food and Rural Affairs (DEFRA). United Kingdom. http://www.thecarbontrust.co.uk/energyCMS/CarbonTrust/pages_preview/page_64.asp. Accessed in 2005 (by Osterwalder et al. 2006)

  • Demesne (2009) Appliance life expectancy: how long should an appliance last? http://www.demesne.info/Home-Maintenance/Appliance-Life-Expectancy.htm. Accessed 5 October 2013

  • Deorsola FA, Russo N, Blengini GA, Fino D (2012) Synthesis, characterization and environmental assessment of nanosized MoS2 particles for lubricants applications. Chem Eng J 195–196:1–6

    Google Scholar 

  • DOE (1994) Voluntary reporting of greenhouse gases under section 1605(b) of the energy policy act of 1992: general guidelines. U.S. Department of Energy, Washington

    Google Scholar 

  • DOE (2011) U.S. Department of energy. Industrial assessment centers database. http://iac.rutgers.edu/database/assessments/. Accessed 13 November 2013

  • Doka G (2003) Life cycle inventories of waste treatment services. Ecoinvent report No 13. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, Zürich, Switzerland. http://www.doka.ch/13_I_WasteTreatmentGeneral.pdf. Accessed 5 October 2013

  • Dornburg V, Lewandowski I, Patel M (2004) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Ind Ecol 7(3–4):93–116

    Google Scholar 

  • Durfee DJ, Tomlinson JJ (2001) Boston washer study. Energy Division. Oak Ridge National Lab. Oak Ridge. http://www.ornl.gov/~webworks/cppr/y2002/rpt/112217.pdf. Accessed 13 June 2013

  • Durucan S, Korre A, Munoz-Melendez G (2006) Mining life cycle modelling: a cradle-to-gate approach to environmental management in the minerals industry. J Clean Prod 14(12–13):1057–1070

    Google Scholar 

  • Duyvesteyn WP, Spitler TM, Sabacky BJ, Prochazka J (2000a) Processing aqueous titanium chloride solutions to ultrafine titanium dioxide. U.S. Patent 6440383. filed Feb. 14, 2000, issued Aug. 27, 2002

  • Duyvesteyn WP, Sabacky BJ, Verhulst DEV, West-Sells PG, Spitler TM, Vince A, Burkholder JR, Huls BJPM (2000b) Processing titaniferous ore to titanium dioxide pigment. U.S. Patent 6375923. filed Feb. 7, 2000, issued April 23, 2002

  • Duyvesteyn WP, Spitler TM, Sabacky BJ, Vince A, Prochazka J (2000c) Processing aqueous titanium solutions to titanium dioxide pigment. U.S. Patent 6548039. filed Feb. 14, 2000, issued April 15, 2003

  • Ekchian JA, Balles EN, Christeller DL, Cowart JS, Fuller WD (1999) Use of non-thermal plasma generated by a corona discharge device (CDD) to improve the efficiency of a 3-way catalyst. Fuel economy & after-treatment development session. Proc Glob Powertrain Congr Stuttg, Ger 9:1–12

    Google Scholar 

  • Energy Efficiency Office (1993) Energy consumption guide 31; the moulding of thermo-plastic containers by the extrusion-blow moulding process. Department of the Environment. Energy Efficiency Office

  • Etchart-Salas R (2007) Suspension plasma spraying. Analytical and experimental approach of the phenomena imply in the reproducibility and the quality of the deposits. PhD thesis No. 50–2007. University of Limoges

  • European Commission (EC) (2001) Integrated pollution prevention and control: reference document on best available techniques in the pulp and paper industry. European Commission. http://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/bvt_zellstoff-papierindustrie_zf_0.pdf. Accessed 16 January 2013

  • European Commission Joint Research Centre (ECJRC) (2010) ILCD handbook: general guide for life cycle assessment—detailed guidance. European Commission. Joint Research Centre. Institute for Environmental and Sustainability, European Union

    Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Google Scholar 

  • Fan Y, Cheng H, Wei Y, Su G, Shen Z (2000) Tailoring the diameters of vapor-grown carbon nanofibers. Carbon 38(6):921–927

    Google Scholar 

  • Farré M, Sanchís J, Barceló D (2011) The fate and the behavior of nanomaterials in the environment, Analysis and assessment of the occurrence. TrAC, Trends Anal Chem 30(3):517–527

    Google Scholar 

  • FEA (2001) Large Volume Solid Inorganic Chemicals. Titanium Dioxide. Final Report. Institute for environmental technique and management. Federal Environmental Agency (Germany-Austria). European Commission .http://www.google.dk/url?qwww.prtr-es.es/data/images/BREF%2520Industria%2520Qu%25C3%25ADmica%2520Inorg%25C3%25A1nica%2520de%2520gran%2520volumen%2520de%2520producci%25C3%25B3n%2520(s%25C3%25B3lidos%2520y%2520otros%2520productos)-02FDB2732F82B5AE.pdf&saeiAI0U7SfM6SN4ATjtYHgBw&vedusg. Accessed 22 May 2013

  • Fiengo G, Glielmo L, Santini S, Caraceniz A (2004) A Fault Diagnosis Algorithm for Three-Way Catalytic Converters. http://www.ing.unisannio.it/fiengo/Download/Pers/Avec2000.pdf. Accessed 14 February 2013

  • Finegan IC, Tibbetts GG, Glasgow DG, Ting JM, Lake ML (2003) Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites. J Mater Sci 38(16):3485–3490

    Google Scholar 

  • FIRE (2011) Factor information retrieval (FIRE). online software. http://cfpub.epa.gov/webfire/. Accessed 11 November 2011

  • Flemström, Carlson R, Erixon M (2004) Relationships between life cycle assessment and risk assessment—potentials and obstacles. Industrial Environmental Informatics (IMI). Chalmers University of Technology. Naturvårdsverket. http://www.naturvardsverket.se/Documents/publikationer/620-5379-5.pdf. Accessed 5 February 2013

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Google Scholar 

  • Frischknecht R, Jungbluth N (2007) Implementation of life cycle impact assessment methods. Data v2.0—Ecoinvent Report No. 3. Swiss Centre for Life Cycle Inventories. Dübendorf. Zürich, pp. 755. http://www.ecoinvent.org/fileadmin/documents/en/03_LCIA-Implementation.pdf. Accessed 15 January 2013

  • Fthenakis V (2008) E-mail communication. Columbia University, New York (done by Sengül & Theis (2010))

    Google Scholar 

  • Fthenakis VM, Kim HC, Alsema E (2008) Emissions from photovoltaic life cycles. Environ Sci Technol 42(6):2168–2174

    Google Scholar 

  • Gandhi N, Diamond ML, van de Meent D, Huijbregts MAJ, Peijnenburg W, Guinee J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44(13):5195–5201

    Google Scholar 

  • Gang Z (2007) Preparation, structure, and properties of advanced polymer composites with long fibers and nanoparticles, Ph.D. thesis, The Ohio State University

  • Ganter MJ, Seager TP, Schauerman CM, Landi BJ, Raffaelle RP (2010) A life-cycle energy analysis of single wall carbon nanotubes produced through laser vaporization. IEEE, Proceedings of International Symposium Sustainable Systems and Technology 18–20 May 2009. doi: 10.1109/ISSST.2009.5156708

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17(3):295–303

    Google Scholar 

  • Geranio L, Heuberger M, Nowack M (2009) The behaviour of silver nanotextiles during washing. J Environ Sci Technol 43(21):8113–8118

    Google Scholar 

  • Giessmann A (2002) Substrat- und Textilbeschichtung, 1st edn. Springer, Berlin, p 180

    Google Scholar 

  • Gordeyev SA, Macedo FJ, Ferreira JA, van Hattum FWJ, Bernardo CA (2000) Transport properties of polymer-vapour grown carbon fibre composites. Phys B: Cond Matt 279(1–3):33–36

    Google Scholar 

  • Grieger KD, Laurent A, Miseljic M, Christensen F, Baun A, Olsen SI (2012) Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? J Nanopart Res 14:958

    Google Scholar 

  • Groner MD, Fabreguette FH, Elam JW (2004) George SM Low-temperature Al2O3 atomic layer deposition. Chem Mater 16(4):639–645

    Google Scholar 

  • Gröning P, Ruffieux P, Schlapbach L, Gröning O (2003) Carbon nanotubes for cold electron sources. Adv Eng Mater 5(8):541–550

    Google Scholar 

  • Grubb FG, Bakshi RB (2010) Life cycle of titanium dioxide nanoparticle production. J Ind Ecol 15(1):81–95

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A et al (2002) Handbook on life cycle assessment. Kluwer Academic Publishers, Operational guide to the ISO standards. Dordrecht, p 704

    Google Scholar 

  • Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747):462–465

    Google Scholar 

  • Gutowski TG, Liow JYH, Sekulic DP (2010) Minimum exergy requirements for the manufacturing of carbon nanotubes. Sustainable Systems and Technology (ISSST). 2010 IEEE International Symposium 1(6):17–19

  • Ha SC, Choi E, Kim SH, Roh JS (2005) Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate. Thin Solid Films 476(2):252–257

    Google Scholar 

  • Hall S, Bradkey T, Moore JT, Kuykindall T, Minella T (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3(2):91–97

    Google Scholar 

  • Hassan MM (2010) Quantification of the environmental benefits of ultrafine/nano titanium dioxide photocatalyst coatings for concrete pavement using hybrid life cycle assessment. ASCE J Infrastruct Syst 16(2):160–166

    Google Scholar 

  • Healy M (2006) Environmental and economic comparison of single-wall carbon nanotube production alternatives. Master’s thesis. Northeastern University. Boston. United States of America

  • Healy ML, Tanwani A, Isaacs JA (2006) Economic and environmental tradeoffs in SWNT production: NSTI-Nanotech. Nano Science and Technology Institute, Boston

    Google Scholar 

  • Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393

    Google Scholar 

  • Hegemann D, Amberg M, Ritter A, Heuberger M (2009) Recent developments in Ag metallised textiles using plasma sputtering. Mater Technol 24(1):41–45

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Google Scholar 

  • Helmer M (2002) News and views: cleaning up catalysts. Nature 418(6894):138

    Google Scholar 

  • Hensel C, Konieczny R, Brück R (2000) Recycling technology for metallic substrates: a closed cycle. Society of Automotive Engineers Technical Paper 2000-01-0596. doi:10.4271/2000-01-0596

  • Hilliard HE (1998) Silver. U.S. Geological Survey Commodity Report. http://pubs.usgs.gov/of/2004/1251/2004-1251.pdf. A newer version from 2007, Accessed 5 October 2013

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425(15):271–282

    Google Scholar 

  • Home depot (2009) Average price and capacity of 18 Energy Star certified washing machines. http://www.homedepot.com. Accessed 5 October 2009

  • Howe JY, Tibbetts GG, Kwag C, Lake ML (2006) Heat treating carbon nanofibers for optimal composite performance. J Mater Res 21(10):2646–2652

    Google Scholar 

  • Hung LS, Tang CW (1999) Interface engineering in preparation of organic surface emitting diodes. Appl Phys Lett 74(21):3209–3211

    Google Scholar 

  • Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21(16):1549–1559

    Google Scholar 

  • Hwang C-L, Ting J, Chiang J-S, Chuang C (2005) Process of direct growth of carbon nanotubes on a substrate at low temperature. U.S. Patent 6,855,376, Chutung (Taiwan): Industrial Technology Research Institute. http://www.freepatentsonline.com/6855376.html. Accessed 20 November 2012

  • IITB (2012) Bio-nanotechnology. Biomaterials and bio-Interfaces Laboratory. School of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IITB). http://www.btc.iitb.ac.in/~/biomatlab/nanotech.html. Accessed 20 November 2012

  • Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123

    Google Scholar 

  • Isaacs AJ, Tanwani A, Healy LM (2006) Environmental assessment of SWNT production. Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment. ISEE, 38–41

  • ISO (2006) 14040: environmental management—life cycle assessment—principles and framework. International Organization for Standization

  • ISO (2008) Technical specifications ISO/TS 27687:2008 (E): nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplate. International Organization for Standization, Berlin

    Google Scholar 

  • Jimenez JL, Nelson DD, Zahniser MS, McManus JB, Kolb CE, Koplow MD, Schmidt S (1997) In The 7th On-Road Vehicle Emissions Workshop: Washington, D.C., 1997

  • JIS (2004) Japanese Industrial Standard (JIS)—Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for air purification performance of photocatalytic materials—part 1: removal of nitric oxide. JIS R 1701-1. 2004;1701-1:1–9

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330

    Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456

    Google Scholar 

  • Joshi S (2008) Can nanotechnology improve the sustainability of biobased products? J Ind Ecol 12(3):474–489

    Google Scholar 

  • Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24(6):583–596

    Google Scholar 

  • Kandabarow AM (2006) Gas Injection Techniques for Al2O3 Atomic Layer Deposition. Micro/Nano Fabrication Laboratory Publication. Princeton Institute for the Science and Technology of Materials. Princeton University. http://w3.pppl.gov/ppst/docs/kandabarow.pdf. Accessed 13 October

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medeka (Oryzias latipes). Environ Health Perspect 114(11):1697–1702

    Google Scholar 

  • Kato K, Hibino T, Komoto K, Ihara S, Yamamoto S, Fujihara H (2001) A life-cycle analysis on thin-film CdS/CdTe PV modules. Sol Energy Mater Sol Cells 67(1–4):279–287

    Google Scholar 

  • Khanna V, Bakshi BR, Lee LJ (2007) Life cycle energy analysis and environmental life cycle assessment of carbon nanofibers production. Proceedings of the 2007 IEEE International Symposium on Electronics & the Environment. 7-10 May 2007. pp.128–133

  • Khanna V, Bakshi BR, Lee LJ (2008) Assessing life cycle environmental implications of polymer nanocomposites. IEEE Computer Society Washington, DC, USA. Proceedings of the 2008 IEEE International Symposium on Electronics and the Environment. 1–6

  • Kim C-W, Choi K-S, Lee S-J, Kim J-M, Nam J-W (2000) Composition for electron emitter of field emission display and method for producing electron emitter using the same. USA: Samsung Display Devices Co., Ltd. p. 6. U.S. Patent number 6146230 A

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Google Scholar 

  • Klöpffer W, Curran MA, Frankl P, Heijungs R, Köhler A, Olsen SI (2007) Nanotechnology and life cycle assessment—synthesis of results attained from a workshop in Washington. D.C. 2-3 October 2006—A Systems Approach to Nanotechnology and the Environment. Woodrow Wilson International Center for Scholars. project on Emerging Nanotechnologies, EU

  • Koehler A, Wildbolz C (2009) Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases. Environ Sci Technol 43(22):8643–8651

    Google Scholar 

  • Köhler RA, Som C, Helland A, Gottshalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Google Scholar 

  • Körner E, Hegemann D (2008) Personal Communication. St. Gallen, 2008. (done by Walser et al. (2011))

  • Koroneos C, Stylos N, Moussiopoulos N (2006) LCA of multicrystalline silicon photovoltaic systems e Part 1: present situation and future perspectives. Int J Life Cycle Assess 11(2):129–136

    Google Scholar 

  • Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42(8):3069–3075

    Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14):2081–2088

    Google Scholar 

  • Künninger T, Fischer A, Gerecke A, Heeb M, Kunz P, Ulrich A, Vonbank R (2010) Release of conventional and nano-sized biocides from coated wooden façades during weathering: consequences for functionality and aquatic environment Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe—Timber Committee October 11-14, 2010, Geneva, Switzerland

  • Kushnir D, Sandén BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12(3):360–375

    Google Scholar 

  • Lafyatis DS, Bennett CJ, Hales MA, Morris D, Cox JP, Rajaram RR (1999) Comparison of Pd-only vs. Pd-Rh catalysts: effects of sulfur. Temperature and Space Velocity. Society of Automotive Engineers: Warrendale PA. 1999; SAE 1999-01-0309

  • Larsen HF, Hauschild M (2007a) Evaluation of ecotoxicity effect indicators for use in LCIA, Int J LCA 12(1):24–33 (Erratum for p. 32 in Int J LCA 12(2):92)

  • Larsen HF, Hauschild M (2007b) GM-troph: a low data demand ecotoxicity effect indicator for use in LCIA. Int J LCA 12(2):79–91

    Google Scholar 

  • Laurijssen J, Marsidi M, Westenbroek A, Worrell E, Faaij A (2010) Paper and biomass for energy? The impact of paper recycling on energy and CO2 emissions. Resour Conserv Recycl 54(12):1208–1218

    Google Scholar 

  • LeCorre D, Hohenthal C, Dufresne A, Bras J (2012) Comparative sustainability assessment of starch nanocrystals. J Polym Environ 21(1):71–80

    Google Scholar 

  • Lloyd MS, Lave BL (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37(15):3458–3466

    Google Scholar 

  • Lloyd MS, Lave BL, Matthews HS (2005) Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environ Sci Technol 39(5):1384–1392

    Google Scholar 

  • Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824

    Google Scholar 

  • Lowry GV, Casman EA (2009) Nanomaterial transport, transformation, and fate in the environment. NATO Science for Peace and Security Series. Nanomaterials: Risks and Benefits 125–137

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899

    Google Scholar 

  • Lucena P, Vadillo JM, Laserna JJ (2001) Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry. Anal Chem 71(19):4385–4391

    Google Scholar 

  • Manda BM, Blok K, Patel MK (2012) Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp. Sci Total Environ 15(439):307–320

    Google Scholar 

  • Merugula AL, Khanna V, Bakshi RB (2010) Comparative life cycle assessment: reinforcing wind turbine blades with carbon nanofibers. Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology. ISSST 2010. 5507724

  • Meyer ED, Curran MA, Gonzales MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol J 43(5):1256–1263

    Google Scholar 

  • Meyer ED, Curran MA, Gonzalez MA (2010) An examination of silver nanoparticles in socks using screening-level life cycle assessment. J Nanopart Res 13(1):147–156

    Google Scholar 

  • Moeller G, Coe-Sullivan S (2006) Quantum-dot light-emitting devices for displays. Inf Disp 22(2):2–6

    Google Scholar 

  • Moign A, Vardelle A, Themelis NJ, Legoux JG (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205(2):668–673

    Google Scholar 

  • Noijuntira I, Kittisupakorn P (2009) Life Cycle Assessment for the Activated Carbon Production by Coconut Shells and Palm-Oil Shells. The 2nd RMUTP International Conference 2010. Thailand. http://www.google.dk/url?qrepository.rmutp.ac.th/bitstream/handle/123456789/708/33.%2520I-sika%2520%2520Noijuntira.pdf%3Fsequence%3D1&saei&ved=&usg. Accessed 12 September 2013

  • Nanosolar Inc. (2008) Designed to last. http://www.nanosolar.com/Designedtolast.htm. Accessed May 2008

  • NLV (2010) Regional authority for consumer protection and food control lower saxony (Niedersaechsisches Landesamt für Verbraucherschutz).Triclosan and Silver in Textiles—Reply on Information Request, 2010. (done by Walser et al. (2011))

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Google Scholar 

  • Oh SH, Bissett EJ, Battiston PA (1993) Mathematical modeling of electrically heated monolith converters: model formulation, numerical methods, and experimental verification. Ind Eng Chem Res 32(8):1560–1567

    Google Scholar 

  • Olsen SI, Christensen FM, Hauschild M, Pedersen F, Larsen HF, Tørsløv J (2001) Life cycle impact assessment of chemicals— a methodological comparison. Environ Impact Assess Rev 21(4):385–404

    Google Scholar 

  • Orbital Engine Corporation (1999) Orbital Direct Injection. A Technology Update from the Orbital Engine Corporation. http://www.orbeng.com.au/orbital/customersProducts/pdf/4smoneng.pdf. Accessed 14 February 2004

  • Osterwalder N, Capello C, Hungerbühler K, Stark JW (2006) Energy consumption during nanoparticle production: how economic is dry synthesis? J Nanopart Res 8(1):1–9

    Google Scholar 

  • Phylipsen D, Kerssemeeckers M, Blok K, Patel M, de Beer J (2002) Clean technologies in the materials sector – current and future environmental performance of material technologies. Report Commissioned by European Commission. http://www.google.dk/url?q=,http://ftp.jrc.es/EURdoc/eur20515en.pdf&sa=U&ei=SFQxU76sN6mk4gTU-4GQCQ&ved=0CB8QFjAA&usg=AFQjCNHGLuePf5WpqWOLVhnqaLygupNe0w. Accessed 16 October 2013

  • Qiu W, Mai K, Zeng H (1998) Effect of macromolecular coupling agent on the property of PP/GF composites. J Appl Polym Sci 71(10):1537–1542

    Google Scholar 

  • Quik TKJ, Vonk AJ, Hansen FS, Baun A, Van De Meent D (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37(2011):1068–1077

    Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Google Scholar 

  • Reimann DO (2006) CEWEP energy report: results of specific data for energy. Efficiency rates and coefficients. plant efficient factors and NCV of 97 EuropeanW-t-E plants and determination of the main energy results. Confederation of European Waste-to-Energy plants (CEWEP). Bamberg, Germany. http://www.cewep.com/storage/med/media/statements/106_11_07_06_CEWP-Report_Final_Version.pdf. Accessed 5 June 2013

  • Riondel A (1998) Process for the preparation of isobornyl(meth)acrylate. Atochem Elf SA. European Patent Application EP0759423, p3

  • Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15(3):212–226

    Google Scholar 

  • Roscheisen MR, Pichler K (2006) (Oct. 3) High throughput surface treatment on coiled flexible substrates. U.S. Patent number 7,115,304 B2

  • Rosenbaum KR, Bachmann MT, Gold SL, Huijbregts AJM, Jolliet O, Juraske R, Koehler A, Larsen FH, MacLeod M, Margni M, McKone ET, Payet J, Schuhmacher M, Van De Meent D, Hauschild ZM (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Google Scholar 

  • Rüdenauer I, Eberle U, Griesshammer R (2006) Ökobilanz und Lebenszykluskostenrechnung Wäschewaschen. Oeko-Institut e.V.: Freiburg, p 147. http://www.oeko.de/oekodoc/289/2006-008-de.pdf. Accessed 5 June 2013

  • Rupasinghe R-A-TP (2011) Dissolution and aggregation of zinc oxide nanoparticles at circumneutral pH; a study of size effects in the presence and absence of citric acid. Master thesis. University of Iowa, 2011

  • Santini S (2003) On Board Diagnosis for Three-Way Catalytic Converters; Group for Research on Automotive Control Engineering: http://www.ing.unisannio.it/glielmo/Bertinoro/Santini.pdf. Accessed 14 February 2003

  • Saouter E, van Hoof G, Feijtel TCJ, Owens JW (2002) The effect of compact formulations on the environmental profile of northern European granular laundry detergents—Part II: life cycle assessment. Int J Life Cycle Assess 7(1):27–38

    Google Scholar 

  • SCENIHR (2007) The existing and proposed definitions relating to products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_012.pdf. Accessed 20 September 2012

  • Scher EC (2006) Nanostructure and nanocomposite based compositions and photovoltaic devices. U.S. Patent 7,087,832

  • Scheringer M, Macleod M, Behra R, Sigg L, Hungerbühler K (2010) Environmental risk associated with nanoparticulate silver used as biocide. H and PC Compendium on Detergency - Vol. 6(2) April/June 2011. 27–29

  • Sengül H, Theis LT (2009) Life cycle inventory of semiconductor cadmium selenide quantum dots for environmental applications. In: Savage et al (eds) Nanotechnology applications for clean Water. William Andrew Inc., Norwich, pp 561–582

    Google Scholar 

  • Sengül H, Theis LT (2010) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J Clean Prod 19(1):21–31

    Google Scholar 

  • Seyler C, Hofstetter T, Hungerbuhler K (2005) Life cycle inventory for thermal treatment of waste solvent from chemical industry: a multiinput allocation model. J Clean Prod 13(13–14):1211–1224

    Google Scholar 

  • Shan Y, Coyle TW, Mostaghimi J (2007) Numerical simulation of droplet breakup and collision in the solution precursor plasma spraying. J Therm Spray Technol 16(5–6):698–704

    Google Scholar 

  • Shan Y, Coyle TW, Mostaghimi J (2010) Modeling the influence of injection modes on the evolution of solution sprays in a plasma jet. J Therm Spray Techol 19(1–2):251

    Google Scholar 

  • Sheats JR (2004) Manufacturing and commercialization issues in organic electronics. J Mater Res 19(7):1974–1989

    Google Scholar 

  • Sheats JR, Capps P, Adriani P (2007) Individually encapsulated solar cells and solar cell strings having a substantially inorganic protective layer. Nanosolar Inc. U.S. Patent Number: 2007/0295390 A1

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ Chem 2(1):9–24

    Google Scholar 

  • Som C, Berges M, Chaudry Q, Dusinska M, Fernandes FT, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169

    Google Scholar 

  • Spielmann M, Kägi T, Stadler P, Tietje O (2004) Life cycle inventories of transport services. Ecoinvent report No 14. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, Zürich, Switzerland. http://www.poli.br/~cardim/PEC/Ecoinvent%20LCA/ecoinventReports/14_Transport.pdf. Accessed 13 October 2013

  • Stamatelos AM, Koltsakis CC, Kandylas IP (1998) Computer aided engineering in SI engine exhaust aftertreatment systems design. In proceeding of FISITA World Automotive Congress 1998. Paris France

  • Stamminger R. (2007) Information brochure “Energieverbrauch der Waschmaschine”. In: Landesweiter Aktionstag Nachhaltiges Waschen

  • Steinfeldt M, von Gleich A, Henkle JLL, Endo M, Morimoto S, Momosaki E (2010a) Environmental relief effects of nanotechnologies by the example of CNT composite materials and films. International Conference; 9th, Ecobalance; Towards and beyond 2020

  • Steinfeldt M, von Gleich A, Petschow U, Pade C, Sprenger R.-U (2010b) Entlastungseffekte für die Umwelt durch nanotechnische Verfahren und Produkte (Environmental Relief Effects through Nanotechnological Processes and Products). UBA-Texte 33/2010, Dessau. http://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3777.pdf. Accessed 16 May 2012

  • Suppen N, Carranza M, Huerta M, Hernández AM (2005) Environmental management and life cycle approaches in the Mexican mining industry. J Clean Prod 14(12–13):1101–1115

    Google Scholar 

  • Tanwani A (2005) Carbon nanotube production: An economic and environmental assessment of alternative technologies. Master’s thesis. Northeastern University, Boston

  • Tibbetts GG, Gorkiewicz DW (1993) A new reactor for growing carbon fibers from liquid-and vapor-phase hydrocarbons. Carbon 31(5):809–814

    Google Scholar 

  • Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RA (1994) Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32(4):569–576

    Google Scholar 

  • Tremeac B, Meunier F (2008) Life cycle analysis of 4. 5 MW and 250 turbines. Renew Sustain Enerey 13(8):2104–2110

    Google Scholar 

  • Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26(May):37–47

    Google Scholar 

  • U.S. Environmental Protection Agency (1990) Titanium tetrachloride production, from report to congress on special wastes from mineral processing. vol. II, Office of Solid Waste, July 1990, p. 13-1–31

  • U.S. Environmental Protection Agency (1997) Benefits and Cost of Potential Tier 2 Emission Reduction Technologies: Final Report. Energy and Environmental Analysis Inc. Office of Mobile Sources, 1997

  • U.S. Census Bureau (2009) Socks production—summary 2008: Report MQ315B(08)-5. Washington DC. U.S. Department of Commerce

  • USEtoxTM (2012) Background of the USEtoxTM model, USEtoxTM homepage. http://www.usetox.org/background.aspx. Accessed 7 February 2012

  • van Hattum FWJ, Leer C, Viana JC, Carneiro OS, Lake ML, Bernardo CA (2006) Conductive long fibre reinforced thermoplastics by using carbon nanofibres. Plast Rubber Comp 35(6–7):247–252

    Google Scholar 

  • Verhulst D, Sabacky B, Spitler T, Duyvesteyn W (2002) The Altair TiO2 pigment process and its extension to the field of nanomaterials. CIM Bull 95:89–94

    Google Scholar 

  • Verhulst D, Sabacky B, Spitler T, Prochazka J (2003) New developments in the Altair TiO2 hydrochloride pigment process. In Proceedings of the 5th International Conference in Honor of Professor Ian Ritchie

  • Verhulst D, Sabacky B, Lang J, Ellsworth D (2006a) Iron control in the Altair hydrochloride pigment process. In Proceedings of the 3rd International Symposium on Iron Control in Hydrometallurgy.

  • Verhulst D, Sabacky B, Marganski R, Wang B, Ellsworth D (2006b) Optimization of the critical steps of the Altair hydrochloride pigment process. In Proceedings of the Sohn Symposium on Advanced Processing of Metals and Materials. Volume 6. Warrendale, PA: TMS

  • Vestas (2004) Life Cycle Assessment of onshore and offshore sited wind farms. LCA on V80-2.0 turbines. Vestas. https://www.google.com/url?qvestas.com/~/media/vestas/about/sustainability/pdfs/lca_v80_2004_uk.pdf&saeivedusg. Accessed 18 October 2012

  • Vestas (2006) Life Cycle Assessment of offshore and onshore sited wind power plants. LCA on V90-3.0 turbines. Vestas. http://www.google.com/url?qvestas.com/~/media/vestas/about/sustainability/pdfs/lca_v90_june_2006.pdf&saei=JFYxU6D4BqGm4ATrtYHQDA&ved=0CB0QFjAA&usg=AFQjCNH3MMlj7s8Hich8YGA-A7zeLmE7fw. Accessed 18 October 2012

  • Vonk JA, Struijs J, van de Meent D, Peijnenburg WJGM (2009) Nanomaterials in the aquatic environment: toxicity. exposure and risk assessment. RIVM Report 607794001/2009, RIVM Bilthoven, Nederlands. http://nl.sitestat.com/rivm/rivm-nl/s?link.en.documents_and_publications.scientific.reports.2010.april.nanomaterials_in_the_aquatic_environment_toxicity_exposure_and_risk_assessment.download_pdf&ns_type=pdf&ns_url=http%3A%2F%2Fwww.rivm.nl%2Fdsresource%3Fobjectid=rivmp:54941&type=org&disposition=inline&ns_nc=1. Accessed 10 October 2012

  • Walser T, Demou E, Lang JD, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver t-shirts. Environ Sci Technol 45(10):4570–4578

    Google Scholar 

  • Wang J, Chen C et al (2008) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183(1–3):72–80

    Google Scholar 

  • Weil M, Dura H, Shimon B, Baumann M, Zimmermann B, Ziemann S, Lei C, Markoulidis F, Lekakou T, Decker M (2012) Ecological assessment of nano-enabled supercapacitors for automotive application. Conf Ser Mater Sci Eng 40:012013

    Google Scholar 

  • Weinzettel J, Reenaas M, Solli C, Hertwich EG (2009) Life cycle assessment of a floating offshore wind turbine. Renew Enerey 34(3):742–747

    Google Scholar 

  • Wenzel H, Hauschild MZ, Alting L (1997) Environmental assessment of products, vol 1: Methodology, tools and case studies in product development. Chapman and Hall, UK

  • Wernet G, Papadokonstantakis S, Hellweg S, Hungerbühler K (2009) Bridging data gaps in environmental assessments: modeling impacts of fine and basic chemical production. Green Chem 11:1826–1831

    Google Scholar 

  • Wickboldt P (2008) US DC (Display Consortium). Telephone Communication. (done by Sengül & Theis (2010))

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Google Scholar 

  • Worrell E, Galitsky C, Masanet E, Graus W (2008) Energy efficiency improvement and cost saving opportunities for the glass industry. An ENERGY STAR guide for energy and plant managers. Environmental Energy Technologies Division. Berkely (California): Ernest Orlando Lawrence Berkeley National Laboratory. http://www.energystar.gov/buildings/sites/default/uploads/tools/Glass-Guide.pdf. Accessed 21 August 2014

  • Wu S, Natsuki T, Kurashiki K, Ni Q, Iwamoto M, Fujii Y (2007) Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites. Adv Comp Mater 16(3):195–206

    Google Scholar 

  • Yamagata C, Ussui V, Andrade JD, Paschoal JOA (2005) Synthesis of nanosilica powders by recovering an effluent from pure zirconia powder production process via wet chemical processing. http://pintassilgo2.ipen.br/biblioteca/2005/ptech/11091.pdf (can be accessed through), http://ebookbrowsee.net/21-19-pdf-d452004477. Accessed 15 October 2013

  • Yu HG, Lee SC, Yu J, Ao CH (2006) Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J Mol Catal A: Chem 246(1–2):206

    Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 263946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Miseljic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miseljic, M., Olsen, S.I. Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 16, 2427 (2014). https://doi.org/10.1007/s11051-014-2427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2427-x

Keywords

Navigation