Skip to main content

Advertisement

Log in

Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain)

  • LIFE CYCLE ASSESSMENT: A TOOL FOR INNOVATION IN LATIN AMERICA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Taking into account the large area of citrus in Spain and the impacts generated by agriculture, reducing the environmental impact of this crop represents an important goal. This study attempts to compare the environmental impact of two citrus cropping systems, organic and conventional, in the region of Valencia (Spain), and to assess the variability within both farming systems in order to highlight the influence of management practices on the environmental performance.

Methods

A survey was carried out on citrus farmers, 145 corresponding to organic production and 122 to conventional. Life cycle assessment (LCA) was used to estimate the environmental impacts of farms and the contribution of each production stage to impacts. Two functional units (FUs), mass- and area-based, were chosen. The variability and confidence intervals of the average impact results were assessed by means of a bootstrap technique. Finally, a k-means cluster analysis was performed to identify groups of farms with comparable impact levels.

Results and discussion

The mean impact values of the conventional farm sample were higher than those of the organic farms, when using 1 ha year−1 as FU, whereas for the FU of 1 kg no differences were found for some impact categories. Most of the impact results were also observed to be highly variable. The distribution of the mean after the bootstrap confirmed both the variability of the impacts and the differences between the farming systems. The cluster analysis determined two groups via their impact categories. Cluster-1, which showed higher impacts, was made up of part of the conventional farms while cluster-2 included the remaining conventional farms and all the organic ones. No difference in yield was found between the conventional farms of both clusters.

Conclusions

Bootstrapped LCA offers the ability to assess the variability of the impacts, regardless of the sample size and the non-normal impact distributions. The cluster analysis shows that conventional farms can attain similar impacts than the organic ones, while maintaining the yield. FU selection is crucial, since a mass-based FU reduces the difference in the environmental performance between conventional and organic farms. To attain a more sustainable citrus farming, a careful selection of the management practices is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  • Audsley E (coordinator) et al (1997) Harmonisation of environmental life cycle assessment for agriculture. Final report. Concerted Action AIR3-CT94-2028, Silsoe Research Inst., Bedford

  • Basset-Mens C, Van Der Werf HM, Durand P, Leterme P (2006) Implications of uncertainty and variability in the life cycle assessment of pig production systems (7 pp). Int J Life Cycle Assess 11(5):298–304

    Article  CAS  Google Scholar 

  • Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of Italian citrus-based products. Environ Manag 43:707–724

    Article  Google Scholar 

  • Beccali M, Cellura M, Iudicello M, Mistretta M (2010) Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios. J Environ Manag 91(7):1415–1428

    Article  CAS  Google Scholar 

  • Berthoud A, Maupu P, Huet C, Poupart A (2011) Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural practices databases and USEtox model. Int J Life Cycle Assess 16(8):841–847

    Article  CAS  Google Scholar 

  • Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18(2):340–361

    Article  Google Scholar 

  • Brady NC, Weil RR (2008) Soil phosphorus and potassium, Ch 14. In: The nature and properties of soils (14th edition). Pearson Prentice Hall, pp 594–638

  • Chen X, Corson MS (2014) Influence of emission-factor uncertainty and farm-characteristic variability in LCA estimates of environmental impacts of French dairy farms. J Clean Prod 81:150–157

    Article  Google Scholar 

  • Chen X, Samson E, Tocqueville A, Aubin J (2015) Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J Clean Prod 87:87–95

    Article  Google Scholar 

  • Chernick MR, Labudde RA (2011) An introduction to bootstrap methods with applications to R. J Wiley and Sons, USA

    Google Scholar 

  • Coltro L, Mourad AL, Kletecke RM, Mendonça TA, Germer SP (2009) Assessing the environmental profile of orange production in Brazil. Int J Life Cycle Assess 14(7):656–664

  • Efron B (1979) Bootstrap methods—another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  • EMEP/EEA. European Environment Agency (2013) Air pollutant emission inventory guidebook. Technical report No 12/2013. Luxembourg (Luxembourg) 2013. ISBN 978-92-9213-403-7

  • Escobar N, Ribal J, Clemente G, Sanjuán N (2014) Consequential LCA of two alternative systems for biodiesel consumption in Spain, considering uncertainty. J Clean Prod 79:61–73

    Article  Google Scholar 

  • FAOSTAT (2012) Food and Agriculture Organization of the United Nations Statistics Division. Available at: http://faostat3.fao.org/home/E. accessed 12 May 2015

  • Filzmoser P, Maronna R, Werner M (2008) Outlier identification in high dimensions. Comput Stat Data Anal 52:1694–1711

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  • Frischknecht R, Althaus HJ, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 12:7–17

    CAS  Google Scholar 

  • Geisler G, Hellweg S, Hungerbühler K (2005) Uncertainty analysis in life cycle assessment (LCA): case study on plant-protection products and implications for decision making. Int J Life Cycle Assess 10(3):184–192

    Article  CAS  Google Scholar 

  • Hayashi K (2011) Assessing management influence on environmental impacts under uncertainty: a case study of paddy rice production in Japan. In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer Netherlands, pp 331–340

  • Hayashi K, Makino N, Shobatake K, Hokazono S (2014) Influence of scenario uncertainty in agricultural inputs on life cycle greenhouse gas emissions from agricultural production systems: the case of chemical fertilizers in Japan. J Clean Prod 73:109–115

    Article  CAS  Google Scholar 

  • Hesterberg T, Monaghan S, Moore DS, Clipson A, Epstein R (2003) Bootstrap methods and permutation tests. WH Freeman and Company, New York

    Google Scholar 

  • Hischier R, Althaus H-J, Bauer C, Doka G, Frischknecht R, Jungbluth N, Nemecek T, Simons A, Stucki M, Sutter J, Tuchschmid M (2010) Documentation of changes implemented in ecoinvent Data v2.1 and v2.2. Final report ecoinvent data v2.2 No. 16. Swiss Centre for Life Cycle Inventories, Dübendorf

  • Hospido A, Milà i Canals L, McLaren S, Truninger M, Edwards-Jones G, Clift R (2009) The role of seasonality in lettuce consumption: a case study of environmental and social aspects. Int J Life Cycle Assess 14(5):381–391

    Article  CAS  Google Scholar 

  • Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Part 1. A general framework for the application of uncertainty and variability in life-cycle assessment. Int J Life Cycle Assess 3(5):273–280

    Article  Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change (2006) IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land uses. Available at http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. accessed 15 May 2014

  • ISO (2006) International Organization for Standardization. ISO 14040. International standard in environmental management. Life cycle assessment: principles and framework. ISO, Geneva

    Google Scholar 

  • Johnson R. (1992) Applied multivariate statistical analysis. Prentice Hall

  • Juraske R, Sanjuán N (2011) Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain. Chemosphere 82(7):956–962

    Article  CAS  Google Scholar 

  • Juste F (2006) La mecanización del cultivo de los cítricos como forma de reducción de costes. Rev Comunidad Valenciana Agraria 5:23–26

    Google Scholar 

  • Kelley K (2005) The effects of nonnormal distributions on confidence intervals around the standardized mean difference: bootstrap and parametric confidence intervals. Educ Psychol Meas 64(1):51–69

    Article  Google Scholar 

  • Knudsen MT, de Almeida GF, Langer V, de Abreu LS, Halberg N (2011) Environmental assessment of organic juice imported to Denmark: a case study on oranges (Citrus sinensis) from Brazil. Org Agric 1(3):167–185

    Article  Google Scholar 

  • Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Social Psychol

  • MAAM (2014) Balance del nitrógeno en la agricultura española (Año 2012) Dirección General de producciones y mercados agrarios. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid. Available at: http://www.magrama.gob.es/es/agricultura/temas/medios-de-produccion/BNAE2012_Metodolog%C3%ADa-Resultados_tcm7-360230.pdf. Accessed 25 Aug 2015

  • MAAM (2014) Anuario de Estadística 2013 Ministerio de Agricultura, Alimentación y Medio Ambiente. Available at: http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/default.aspx. Accessed 12 June 2015

  • MAGRAMA (2015) Consulta de hojas de cálculo de costes de maquinaria. Available at http://www.magrama.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-tecnologias-probadas/maquinaria-agricola/hojas-calculo-maqui.aspx#para1

  • Maindonald JH, Braun WJ (2014) DAAG: data analysis and graphics data and functions. R package version 1.20. Available at: http://CRAN.R-project.org/package=DAAG

  • Melia P, Petrillo M, Albertelli G, Mandich A, Gatto M (2012) A bootstrap approach to account for uncertainty in egg production methods applied to small fish stocks. Fish Res 117:130–136

    Article  Google Scholar 

  • Milà i Canals LM, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114(2):226–238

    Article  Google Scholar 

  • Mouron P, Nemecek T, Scholz RW, Weber O (2006) Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agric Ecosyt Environ 114:311–322

    Article  Google Scholar 

  • Mutel CL, Pfister S, Hellweg S (2011) GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ Sci Technol 46(2):1096–1103

    Article  Google Scholar 

  • Nemecek T, Kägi T, Blaser S (2007) Life cycle inventories of agricultural production systems. Final report ecoinvent v2.0 No.15. Swiss Centre for Life Cycle Inventories, Dübendorf

  • Nielsen PH, Nielsen AM, Weidema BP, Dalgaard R and Halberg N (2003) LCA food data base. Available at: http://www.lcafood.dk

  • OCCC, Oficina Catalana de Canvi Climàtic (2013) Guía práctica para el cálculo de emisiones de gases de efecto invernadero (GEI). Generalitat de Catalunya, Catalunya

    Google Scholar 

  • Patyk A, Reinhardt G (1997) Düngemittel- Energie- und Stoffstromsbilanzen. Friedr. Vieweg & Sohn Publishers. Braunschweig/Wiesbaden, Germany. ISBN: 3-528-06885-X.

  • Pergola M, D’amico M, Celano G, Palese AM, Scuderi A, Di Vita G, Pappalardo G, Inglese P (2013) Sustainability evaluation of Sicily’s lemon and orange production: an energy, economic and environmental analysis. J Environ Manag 128:674–682

    Article  CAS  Google Scholar 

  • Ramos S, Vázquez-Rowe I, Artetxe I, Moreira MT, Feijóo G, Zufía J (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the time line delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610

    Article  Google Scholar 

  • Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15(9):927–937

    Article  CAS  Google Scholar 

  • Rodríguez C, Ciroth A, Srocka M (2014) The importance of regionalized LCIA in agricultural LCA–new software implementation and case study. In Proc. 9th Int. Conf. Life Cycle Assess Agri-Food Sector, San Francisco, pp 1120–1128

  • Röös E, Sundberg C, Hansson PA (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15(5):478–488

    Article  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Sanjuán N, Úbeda L, Clemente G, Girona F, Mulet A (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agric Resour Gov Ecol 4(2):163–177

    Google Scholar 

  • Stoessel F, Juraske R, Pfister S, Hellweg S (2012) Life cycle inventory and carbon and water footprint of fruits and vegetables: application to a Swiss retailer. Environ Sci Technol 46(6):3253–3262

    Article  CAS  Google Scholar 

  • Vakili K, Schmitt E (2014) Finding multivariate outliers with FastPCS. Comput Stat Data Anal 69:55–66

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manag 98:73–83

    Article  Google Scholar 

  • Vinyes E, Gasol CM, Asin L, Alegre S, Muñoz P (2015) Life cycle assessment of multiyear peach production. J Clean Prod 104:68–79

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Spanish Ministerio de Economía y Competitividad for the financial support under the project CTM2013-47,340-R and the Generalitat Valenciana for the financial support under the project PROMETEOII/2014/005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Sanjuán.

Additional information

Responsible editor: Ian Vázquez-Rowe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribal, J., Ramírez-Sanz, C., Estruch, V. et al. Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). Int J Life Cycle Assess 22, 571–586 (2017). https://doi.org/10.1007/s11367-016-1048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1048-2

Keywords

Navigation