Skip to main content

Advertisement

Log in

Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on how to consistently include health effects from PM2.5 exposure in LCA practice. As a consequence, different models are currently used to assess life cycle impacts for PM2.5, sometimes leading to inconsistent results. In a global effort initiated by the United Nations Environment Programme (UNEP)/Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, respiratory inorganics’ impacts expressed as health effects from PM2.5 exposure were selected as one of the initial impact categories to undergo review with the goal of providing global guidance for implementation in life cycle impact assessment (LCIA). The goal of this paper is to summarize the current knowledge and practice for assessing health effects from PM2.5 exposure and to provide recommendations for their consistent integration into LCIA.

Methods

A task force on human health impacts was convened to build the framework for consistently quantifying health effects from PM2.5 exposure and for recommending PM2.5 characterization factors. In an initial Guidance Workshop, existing literature was reviewed and input from a broad range of internationally recognized experts was obtained and discussed. Workshop objectives were to identify the main scientific questions and challenges for quantifying health effects from PM2.5 exposure and to provide initial guidance to the impact quantification process.

Results and discussion

A set of 10 recommendations was developed addressing (a) the general framework for assessing PM2.5-related health effects, (b) approaches and data to estimate human exposure to PM2.5 using intake fractions, and (c) approaches and data to characterize exposure-response functions (ERFs) for PM2.5 and to quantify severity of the diseases attributed to PM2.5 exposure. Despite these advances, a number of complex issues, such as those related to nonlinearity of the ERF and the possible need to provide different ERFs for use in different geographical regions, require further analysis.

Conclusions and outlook

Questions of how to refine and improve the overall framework were analyzed. Data and models were proposed for harmonizing various elements of the health impact pathways for PM2.5. Within the next two years, our goal is to build a global guidance framework and to determine characterization factors that are more reliable for incorporating the health effects from exposure to PM2.5 into LCIA. Ideally, this will allow quantification of the impacts of both indoor and outdoor exposures to PM2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.lifecycleinitiative.org/activities/phase-iii

  2. PM2.5 concentrations can be converted to intake using the breathing rate of the exposed population. How to average the breathing rate for different activities, age, etc. remains to be further discussed.

  3. http://www.euro.who.int/en/what-we-do/health-topics/environment-and-health/air-quality/activities/health-aspects-of-air-pollution-and-review-of-eu-policies-the-revihaap-and-hrapie-projects

  4. Pellston Workshops are preeminent workshops held by the SETAC, each of which brings together leading scientists from academia, business, and governments around the world and focuses on a relevant environmental topic with proceedings published as a peer-reviewed report, book, or journal article compilation.

References

  • Abrahamowicz M, Schopflocher T, Leffondré K, du Berger R, Krewski D (2003) Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study. J Toxicol Environ Health 66:1625–1654

    Article  CAS  Google Scholar 

  • Apte JS, Bombrun E, Marshall JD, Nazaroff WW (2012) Global intraurban intake fractions for primary air pollutants from vehicles and other distributed sources. Environ Sci Technol 46:3415–3423

    Article  CAS  Google Scholar 

  • Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G et al (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383:785–795

    Article  CAS  Google Scholar 

  • Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, Koopman LP, Neijens HJ, Gerritsen J, Kerkhof M, Heinrich J, Bellander T, Brunekreef B (2002) Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respr Crit Care 166:1092–1098

    Article  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  • Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS et al (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403

    Google Scholar 

  • Chen H, Goldberg MS, Villeneuve PJ (2008) A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health 23:243–297

    CAS  Google Scholar 

  • Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Copes R (2013) Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect 121:804–810

    Article  CAS  Google Scholar 

  • COMEAP (2009) Long-term exposure to air pollution: effect on mortality, health protection agency for the committee on the medical effects of air pollutants. UK, London

    Google Scholar 

  • COMEAP (2010) The mortality effects of long-term exposure to particulate air pollution in the United Kingdom, health protection agency for the committee on the medical effects of air pollutants. UK, London

    Google Scholar 

  • Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M et al (2013) Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect 121:367–373

    Article  CAS  Google Scholar 

  • Delfino RJ, Sioutas C, Malik S (2005) Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect 113:934–946

    Article  Google Scholar 

  • Donaldson K, Gilmour MI, MacNee W (2000) Asthma and PM10. Respir Res 1:12–15

    Article  CAS  Google Scholar 

  • EC (2010a) International Reference Life Cycle Data System (ILCD) handbook: general guide for life cycle assessment—detailed guidance, 1st edn. European Commission, Brussels

    Google Scholar 

  • EC (2010b) International Reference Life Cycle Data System (ILCD) handbook: framework and requirements for LCIA models and indicators, 1st edn. European Commission, Brussels

    Google Scholar 

  • EC (2010c) International Reference Life Cycle Data System (ILCD) handbook: analysis of existing environmental impact assessment methodologies for use in life cycle assessment, 1st edn. European Commission, Brussels

    Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Gavett SH, Koren HS (2001) The role of particulate matter in exacerbation of atopic asthma. Int Arch Allergy Immunol 124:109–112

    Article  CAS  Google Scholar 

  • Greco SL, Wilson AM, Spengler JD, Levy JI (2007) Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos Environ 41:1011–1025

    Article  CAS  Google Scholar 

  • Gronlund CJ, Humbert S, Shaked S, O’Neill MS, Jolliet O (2014) Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qual Atmos Health. doi:10.1007/s11869-014-0283-6

    Google Scholar 

  • Hänninen O, Knol AB, Jantunen M, Lim T-A, Conrad A, Rappolder M, Carrer P, Fanetti A-C, Kim R, Buekers J, Torfs R, Iavarone I, Classen T, Hornberg C, Mekel OCL (2014) Environmental burden of disease in Europe: estimates for nine stressors in six countries. Environ Health Perspect 122:439–446

    Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    Article  CAS  Google Scholar 

  • Hauschild MZ (2005) Assessing environmental impacts in a life-cycle perspective. Environ Sci Technol 39:81A–88A

    Article  CAS  Google Scholar 

  • Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Heath GA, Granvold PW, Hoats AS, Nazaroff W, Nazaroff WW (2006) Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmos Environ 40:7164–7177

    Article  CAS  Google Scholar 

  • HEI (2013) Understanding the health effects of ambient ultrafine particles. Health Effects Institute, Boston

    Google Scholar 

  • Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MAJ, McKone TE (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43:1670–1679

    Article  CAS  Google Scholar 

  • Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci U S A 106:2077–2082

    Article  CAS  Google Scholar 

  • Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 12:43–57

    Article  CAS  Google Scholar 

  • Humbert S, Manneh R, Shaked S, Wannaz C, Horvath A, Deschênes L, Jolliet O, Margni M (2009) Assessing regional intake fractions in North America. Sci Total Environ 407:4812–4820

    Article  CAS  Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45:4808–4816

    Article  CAS  Google Scholar 

  • Hurley F, Alistair H, Cowie H, Holland M, Miller B, Pye S, Watkiss P (2005) Methodology for the cost-benefit analysis for CAFE: vol. 2: health impact assessment. AEA Technology Assessment, Oxon

    Google Scholar 

  • ISO (2006) International Standard. Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  • Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C et al (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967

    Article  Google Scholar 

  • Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526

    Article  CAS  Google Scholar 

  • Kheirbek I, Wheeler K, Walters S, Kass D, Matte T (2013) PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Qual Atmos Health 6:473–486

    Article  CAS  Google Scholar 

  • Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Jerrett M, Abrahamowicz M, White WH (2000) Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of particulate air pollution and mortality. Health Effects Institute, Boston

    Google Scholar 

  • Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801

    Article  Google Scholar 

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality. Am J Respr Crit Care 173:667–672

    Article  CAS  Google Scholar 

  • Leksell I, Rabl A (2001) Air pollution and mortality: quantification and valuation of years of life lost. Risk Anal 21:843–857

    Article  CAS  Google Scholar 

  • Levy JI, Wolff SK, Evans JS (2002) A regression-based approach for estimating primary and secondary particulate matter intake fractions. Risk Anal 22:895–904

    Article  Google Scholar 

  • Levy JI, Wilson AM, Evans JS, Spengler JD (2003) Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ Sci Technol 37:5528–5536

    Article  CAS  Google Scholar 

  • Levy JI, Diez D, Dou Y, Barr CD, Dominici F (2012) A meta-analysis and multisite time-series analysis of the differential toxicity of major fine particulate matter constituents. Epidemiology 175:1091–1099

    Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Lippmann M, Chen L-C (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39:865–913

    Article  CAS  Google Scholar 

  • Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, Smith DF, Garcia C, Chang ET, Bernstein L (2011) Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respr Crit Care 184:828–835

    Article  CAS  Google Scholar 

  • Lobscheid AB, Nazaroff WW, Spears M, Horvath A, McKone TE (2012) Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States. Atmos Environ 63:298–305

    Article  CAS  Google Scholar 

  • Loomis D, Grosse Y, Lauby-Secretan B, Ghissassi FE, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263

    Article  CAS  Google Scholar 

  • Marshall JD, Riley WJ, McKone TE, Nazaroff WW (2003) Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin. Atmos Environ 37:3455–3468

    Article  CAS  Google Scholar 

  • Marshall JD, Teoh S-K, Nazaroff WW (2005) Intake fraction of nonreactive vehicle emissions in US urban areas. Atmos Environ 39:1363–1371

    Article  CAS  Google Scholar 

  • Mehta S, Shin H, Burnett R, North T, Cohen AJ (2013) Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 6:69–83

    Article  CAS  Google Scholar 

  • Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl J Med 356:447–458

    Article  CAS  Google Scholar 

  • Murray CJL, Lopez AD (1996a) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard University Press, Cambridge

    Google Scholar 

  • Murray CJL, Lopez AD (1996b) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274:740–743

    Article  CAS  Google Scholar 

  • Murray CJL, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, Naghavi M, Salomon JA, Shibuya K, Vos T, Wikler D, Lopez AD (2012) GBD 2010: design, definitions, and metrics. Lancet 380:2063–2066

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Ostro B (2004) Environmental burden of disease series, no. 5. Outdoor air pollution: assessing the environmental burden of disease at national and local levels. World Health Organization, Geneva

    Google Scholar 

  • Paulot F, Jacob DJ (2014) Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Environ Sci Technol 48:903–908

    Article  CAS  Google Scholar 

  • Pelucchi C, Negri E, Gallus S, Boffetta P, Tramacere I, La Vecchia C (2009) Long-term particulate matter exposure and mortality: a review of European epidemiological studies. BMC Public Health 9:453–460

    Article  Google Scholar 

  • Pope CA III, Dockery DW, Schwartz J (1995) Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 7:1–18

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120:941–948

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Gapstur SM, Thun MJ (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect 119:1616–1621

    Article  Google Scholar 

  • Potting J, Preiss P, Seppälä J, Struijs J, Wiertz J, Blazek M, Heijungs R, Itsubo N, Masanet E, Nebel B, Nishioka Y, Payet J, Becaert V, Basset-Mens C, Jolliet O (2007) Current practice in LCIA of transboundary impact categories. report of task force 4 on transboundary impacts. UNEP/SETAC Life Cycle Initiative

  • Pregger T, Friedrich R (2009) Effective pollutant emission heights for atmospheric transport modelling based on real-world information. Environ Pollut 157:552–560

    Article  CAS  Google Scholar 

  • Puett RC, Hart JE, Yanosky JD, Paciorek C, Schwartz J, Suh H, Speizer FE, Laden F (2009) Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the nurses’ health study. Environ Health Perspect 117:1702–1706

    Article  Google Scholar 

  • Puett RC, Hart JE, Suh H, Mittleman M, Laden F (2011) Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ Health Perspect 119:1130–1135

    Article  Google Scholar 

  • Rabl A (2005) Air pollution mortality: harvesting and loss of life expectancy. J Toxicol Environ Health 68:1175–1180

    Article  CAS  Google Scholar 

  • Ries FJ, Marshall JD, Brauer M (2009) Intake fraction of urban wood smoke. Environ Sci Technol 43:4701–4706

    Article  CAS  Google Scholar 

  • Riley WJ, McKone TE, Lai ACK, Nazaroff WW (2002) Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environ Sci Technol 36:200–207

    Article  CAS  Google Scholar 

  • Rohr AC, Wyzga RE (2012) Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130–152

    Article  CAS  Google Scholar 

  • Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592

    Article  Google Scholar 

  • Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M et al (2012) Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet 380:2129–2143

    Article  Google Scholar 

  • Schwartz J, Coull B, Laden F, Ryan L (2008) The effect of dose and timing of dose on the association between airborne particles and survival. Environ Health Perspect 116:64–69

    Article  Google Scholar 

  • Squizzato S, Masiol M, Brunelli A, Pistollato S, Tarabotti E, Rampazzo G, Pavoni B (2013) Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos Chem Phys 13:1927–1939

    Article  Google Scholar 

  • Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F (2013) Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. Environ Health Perspect 121:1026–1033

    CAS  Google Scholar 

  • Stanek LW, Sacks JD, Dutton SJ, Dubois J-JB (2011) Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmos Environ 45:5655–5663

    Article  CAS  Google Scholar 

  • Straif K, Cohen A, Samet J (2013) Air pollution and cancer. IARC scientific publication no. 161. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Tainio M, Sofiev M, Hujo M, Tuomisto JT, Loh M, Jantunen MJ, Karppinen A, Kangas L, Karvosenoja N, Kupiainen K, Porvari P, Kukkonen J (2009) Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions. Atmos Environ 43:3052–3059

    Article  CAS  Google Scholar 

  • Tessum CW, Marshall JD, Hill JD (2012) A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States. Environ Sci Technol 46:11408–11417

    Article  CAS  Google Scholar 

  • Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild MZ, Hertwich E, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen S, Pennington DW, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. SETAC, Pensacola

    Google Scholar 

  • van Zelm R, Huijbregts MAJ, den Hollander HA, van Jaarsveld HA, Sauter FJ, Struijs J, van Wijnen HJ, van de Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42:441–453

    Article  Google Scholar 

  • Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin-Rector A, Levitz CE, Lopez AD, Murray CJL (2012) Age-specific and sex-specific mortality in 187 countries, 1970-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2071–2094

    Article  Google Scholar 

  • Weichenthal S, Dufresne A, Infante-Rivard C (2007) Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Indoor Air 17:81–91

    Article  CAS  Google Scholar 

  • WHO (2006) Health risks of particulate matter from long-range transboundary air pollution, World Health Organization, European Centre for Environment and Health. Bonn, Germany

    Google Scholar 

  • WHO (2013a) Health risks of air pollution in Europe—HRAPIE project recommendations for concentration-response functions for cost-benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization, Geneva

    Google Scholar 

  • WHO (2013b) Review of evidence on health aspects of air pollution—REVIHAAP project. World Health Organization, Geneva

    Google Scholar 

  • Xu L, Penner JE (2012) Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos Chem Phys 12:9479–9504

    Article  CAS  Google Scholar 

  • Zhou Y, Levy JI, Evans JS, Hammitt JK (2006) The influence of geographic location on population exposure to emissions from power plants throughout China. Environ Int 32:365–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fantke.

Additional information

Responsible editor: Michael Z. Hauschild

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantke, P., Jolliet, O., Evans, J.S. et al. Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop. Int J Life Cycle Assess 20, 276–288 (2015). https://doi.org/10.1007/s11367-014-0822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0822-2

Keywords

Navigation