Skip to main content
Log in

Life cycle assessment at nanoscale: review and recommendations

  • LCA ON NANOTECHNOLOGY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The need for a systematic evaluation of the human and environmental impacts of engineered nanomaterials (ENMs) has been widely recognized, and a growing body of literature is available endorsing life cycle assessment (LCA) as a valid tool for the same. The purpose of this study is to evaluate how the nano-specific environmental assessments are being done within the existing framework of life cycle inventory and impact assessment and whether these frameworks are valid and/or whether they can be modified for nano-evaluations.

Method

In order to do that, we reviewed the state-of-the-art literature on environmental impacts of nanomaterials and life cycle assessment studies on ENMs and nanoproducts. We evaluated the major characteristics and mechanisms under which nanomaterials affect the environment and whether these characteristics and mechanisms can be adequately addressed with current life cycle inventories and impact assessment practices. We also discuss whether the current data and knowledge accumulated around fate, transport, and toxicity of nanomaterials can be used to perform an interim evaluation while more data are being generated.

Observations and recommendations

We found that while there is plenty of literature available promoting LCA as a viable tool for ENMs and nanoproducts, there are only a handful of studies where at least some parts of life cycle were evaluated for nanoproducts or nanomaterial. None of the LCA studies on ENMs or nanoproducts that we came across assessed nano-specific fate, transport, and toxicity effects as part of their evaluation citing the lack of data as the primary reason.

However, our literature review indicates that nano-LCA studies need not omit the assessment of nanomaterials’ human health and environmental impact due to incomplete data. There is some evidence that scalability may exist in certain types of nanomaterial, and traditional characterization can be applied even below 100 nm up to the scalability breakdown limits. For the size range where the scalability cannot be established, it may be more appropriate to explore empirical relationships, though possibly crude, between nanomaterial properties and their impact on human health and environment. Empirical relationships thus derived can serve as valid input for assessment until specific data points for nanomaterial fate, transport, and toxicity become available. Finally, where there is no quantitative data available, qualitative inferences may be drawn based on the known information of the nanomaterial and its potential release pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nano 4(10):634–641

    Article  CAS  Google Scholar 

  • Balbus JM, Florini K, Denison RA, Walsh SA (2006) Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment. Ann N Y Acad Sci 1076(1):331–342

    Article  Google Scholar 

  • Bauer C, Buchgeister J, Hischier R, Poganietz W, Schebek L, Warsen J (2008) Towards a framework for life cycle thinking in the assessment of nanotechnology. J Clean Prod 16(8–9):910–926

    Article  Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manag Assoc 55(6):708–746

    CAS  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(1):11

    Article  Google Scholar 

  • Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199

    Article  CAS  Google Scholar 

  • Davis JM (2007) How to assess the risks of nanotechnology: learning from past experience. J Nanosci Nanotechno 7(2):402–409

    Article  CAS  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605

    Article  CAS  Google Scholar 

  • Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9(3):213–228

    Article  CAS  Google Scholar 

  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure–activity relationship modeling. Acs Nano 4(10):5703–5712

    Article  CAS  Google Scholar 

  • Fourches D, Pu D, Tropsha A (2011) Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen 14(3):217–225

    Article  CAS  Google Scholar 

  • Grubb GF, Bakshi BR (2011) Life cycle of titanium dioxide nanoparticle production impact of emissions and use of resources. J Ind Ecol 15(1):81–95

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325

    Article  CAS  Google Scholar 

  • Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393

    Article  CAS  Google Scholar 

  • Helland A, Scheringer M, Siegrist M, Kastenholz HG, Wiek A, Scholz RW (2008) Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ Sci Technol 42(2):640–646

    Article  CAS  Google Scholar 

  • ISO-14040 (2006) Environmental management—life cycle assessment—principles and framework. International Organisation for Standardisation (ISO), Geneve

    Google Scholar 

  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  CAS  Google Scholar 

  • Junam Y, Lead J (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    Article  CAS  Google Scholar 

  • Khanna V, Bakshi BR (2009) Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ Sci Technol 43(6):2078–2084

    Article  CAS  Google Scholar 

  • Khanna V, Bakshi BR, Lee LJ (2008) Carbon nanofiber production. J Ind Ecol 12(3):394–410

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825

    Article  CAS  Google Scholar 

  • Klöpffer W; Int J Life Cycle Assess, Frankfurt, Germany, U. E. Mary Ann Curran, Cincinnati, USA, A. I. Paolo Frankl, Roma, Italy, C. Reinout Heijungs, Leiden University, Netherlands, E. Z. Annette Köhler, Switzerland and T. U. o. D. Stig Irving Olsen, Lyngby, Denmark (2007) Nanotechnology and life cycle assessment. Project on Emerging Technologies, Woodrow Wilson International Center for Scholars, The Pew Charitable Trusts, The European Commission

  • Köhler AR, Som C, Helland A, Gottschalk F (2009) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Google Scholar 

  • Kushnir D, Sandén BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12(3):360–375

    Article  CAS  Google Scholar 

  • Lewinski N (2008) Nanomaterials: what are the environmental and health impacts? From www.aiche.org/cep

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  CAS  Google Scholar 

  • Linkov I, Satterstrom FK, Steevens J, Ferguson E, Pleus RC (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res 9(4):543–554

    Article  Google Scholar 

  • Linkov I, Varghese S, Jamil S, Seager T, Kiker G, Bridges T (2005) Multi-criteria decision analysis: a framework for structuring remedial decisions at contaminated sites. In: Linkov I, Ramadan A (eds) Comparative risk assessment and environmental decision making. Springer, Berlin, 38:15–54

    Chapter  Google Scholar 

  • Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37(15):3458–3466

    Article  CAS  Google Scholar 

  • Lloyd SM, Lave LB, Matthews HS (2005) Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environ Sci Technol 39(5):1384–1392

    Article  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl A Sci 105(38):14265–14270

    Article  CAS  Google Scholar 

  • LUX-Research (2004) Sizing nanotechnology’s value chain. LUX Research Inc, NY

    Google Scholar 

  • Matthews HS, Lave L, MacLean H (2002) Life cycle impact assessment: a challenge for risk analysts. Risk Anal 22(5):853–860

    Article  Google Scholar 

  • Maynard AD (2006) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51(1):1–12

    Article  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:S109–S129

    Article  CAS  Google Scholar 

  • McKone TE, Enoch KG (2002) CalTOX (registered trademark), a multimedia total exposure model spreadsheet user’s guide. version 4.0 Lawrence Berkeley National Laboratory report LBNL – 47399

  • Meng H, Xia T, George S, Nel AE (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. Acs Nano 3(7):1620–1627

    Article  CAS  Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263

    Article  CAS  Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2010) An examination of silver nanoparticles in socks using screening-level life cycle assessment. J Nanopart Res 13(1):147–156

    Article  Google Scholar 

  • Nel A (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8

    Article  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  • Osterwalder N, Capello C, Hungerbühler K, Stark WJ (2006) Energy consumption during nanoparticle production: how economic is dry synthesis? J Nanopart Res 8(1):1–9

    Article  CAS  Google Scholar 

  • PEN (2011) Nanotech-enabled consumer products continue to rise. http://www.nanotechproject.org/news/archive/9231/. Accessed 10 March 2011

  • Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  • Puzyn T, Gajewicz A, Leszczynska D, Leszczynski J (2010) Nanomaterials—the next great challenge for Qsar modelers., pp 383–409

    Google Scholar 

  • Puzyn T, Leszczynska D, Leszczynski J (2009) Toward the development of “Nano-QSARs”: advances and challenges. Small 5(22):2494–2509

    Article  CAS  Google Scholar 

  • Ray P, Yu H, Fu P (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C 27(1):1–35

    Article  CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14(2):124–133

    Article  Google Scholar 

  • Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15(3):212–226

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies—a review. Toxicology 269(2–3):92–104

    Article  CAS  Google Scholar 

  • Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670

    Article  CAS  Google Scholar 

  • Seager TP, Linkov I (2009) Uncertainty in life cycle assessment of nanomaterials. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Springer, Netherlands, pp 423–436

    Google Scholar 

  • Şengül H, Theis TL (2011) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J Clean Prod 19(1):21–31

    Article  Google Scholar 

  • Seppälä J, Basson L, Norris GA (2001) Decision analysis frameworks for life-cycle impact assessment. J Ind Ecol 5(4):45–68

    Article  Google Scholar 

  • Shatkin JA (2008) Informing environmental decision making by combining life cycle assessment and risk analysis. J Ind Ecol 12(3):278–281

    Article  Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169

    Article  CAS  Google Scholar 

  • Subramanian V, Youtie J, Porter AL, Shapira P (2009) Is there a shift to active nanostructures? J Nanopart Res 12(1):1–10

    Article  Google Scholar 

  • Tervonen T, Lahdelma R (2007) Implementing stochastic multicriteria acceptability analysis. Eur J Oper Res 178(2):500–513

    Article  Google Scholar 

  • Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2008) Risk-based classification system of nanomaterials. J Nanopart Res 11(4):757–766

    Article  Google Scholar 

  • Theis TL, Bakshi BR, Durham D, Fthenakis VM, Gutowski TG, Isaacs JA, Seager T, Wiesner MR (2011) A life cycle framework for the investigation of environmentally benign nanoparticles and products. physica status solidi (RRL). Rapid Res Lett 5(9):312–317

    CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189(1–2):556–563

    Article  CAS  Google Scholar 

  • UNESCO (2006) The Ethics and Politics of Nanotechnology, United Nations Educational, Scientific and Cultural Organization

  • Wardak A, Gorman ME, Swami N, Deshpande S (2008) Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol 12(3):435–448

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43(17):6458–6462

    Article  CAS  Google Scholar 

  • Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44(9):2948–2956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is partially based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwon Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavankar, S., Suh, S. & Keller, A.F. Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17, 295–303 (2012). https://doi.org/10.1007/s11367-011-0368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-011-0368-5

Keywords

Navigation