Skip to main content

Environmental Risk Assessment of Emerging Contaminants—The Case of Nanomaterials

  • Chapter
  • First Online:
Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants

Abstract

Risk assessment is a powerful tool to help evaluate potential environmental and health risks of novel materials. However, traditional risk assessment frameworks and methods often face significant challenges when evaluating novel materials due to uncertainties and data gaps. Engineered nanomaterials is one prominent example of new, advanced materials whereby scientists, researchers and decision-makers are still discussing best practices to modify and update risk assessment frameworks after nearly two decades of research. This chapter focuses on how early warning signs within the environmental risk assessment development process for nanomaterials were addressed with a focus on characterizing uncertainty. We shed light on how environmental risk assessment of nanomaterials transitioned from a state of “known unknowns” to data-driven inputs to conducting risk assessments. We also discuss ecotoxicological testing considerations, and in particular how methodological and technical challenges were addressed. Finally, we provide recommendations on how best to transfer identified best practices and knowledge to other emerging technologies and advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolahpur-Monikh F, Chupani L, Arenas-Lago D et al (2021) Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nat Commun 12:899

    Article  CAS  Google Scholar 

  • Aitken RA, Bassan A, Friedrichs S et al (2011) Specific advice on exposure assessment and hazard/risk characterisation for nanomaterials under REACH (RIP-oN 3) – Final Project Report. European Commission, Brussels, Belgium

    Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K et al (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Arvidsson R, Furberg A, Baun A et al (2018) Proxy measures for simplified environmental assessment of manufactured nanomaterials. Environ Sci Technol 52:13670–13680

    Article  CAS  Google Scholar 

  • Arvidsson R, Hansen SF, Baun A (2020) Influence of natural organic matter on the aquatic ecotoxicity of engineered nanoparticles: recommendations for environmental risk assessment. NanoImpact 20:100263

    Google Scholar 

  • Baun A, Hartmann NB, Grieger K et al (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger KD et al (2009) Setting the limits for engineered nanoparticles in European surface waters—Are current approaches appropriate. J Environ Monit 11:1774–1781

    Article  CAS  Google Scholar 

  • Baun A, Sayre P, Steinhäuser KG et al (2017) Regulatory relevant and reliable data for the environmental fate of manufactured nanomaterials. NanoImpact 8:1–10

    Article  Google Scholar 

  • Bondarenko OM, Heinlaan M, Sihtmae M et al (2016) Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology 10:1229–1242

    Article  CAS  Google Scholar 

  • Calow P (1997) General principles and overview. In: Calow P (ed) Handbook of ecotoxicology. Blackwell Scientific Publications, Oxford, England

    Google Scholar 

  • Chen G, Peijnenburg WJGM, Xiao Y et al (2018) Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Food Chem Toxicol 112:563–570

    Article  CAS  Google Scholar 

  • Cupi D, Hartmann NB, Baun A (2015) The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of ZnO, TiO2, and Ag nanoparticles with Daphnia magna. Environ Toxicol Chem 34:497–506

    Article  CAS  Google Scholar 

  • DEFRA (2007) Characterising the potential risks posed by engineered nanoparticles; Second U.K. Government research report; Department for Environment, Food and Rural Affairs: London, UK

    Google Scholar 

  • Docter D, Westmeier D, Markiewicz M et al (2015) The nanoparticle biomolecule corona: lessons learned—Challenge accepted? Chem Soc Rev 44:6094–6121

    Article  CAS  Google Scholar 

  • Drasler B, Sayre P, Steinhauser K et al (2017) In vitro approaches to assess the hazard of nanomaterials. NanoImpact 8:99–116

    Google Scholar 

  • ECHA (2012) Guidance on information requirements and chemical safety assessment Chapter R.19: Uncertainty analysis. European Chemicals Agency, Helsinki, Finland

    Google Scholar 

  • EEA (2001) Late lessons from early warnings: the precautionary principle 1896–2000, European Environmental Agency, Copenhagen, Denmark

    Google Scholar 

  • Franken R, Heringa MB, Oosterwijk T et al (2020) Ranking of human risk assessment models for manufactured nanomaterials along the Cooper stage-gate innovation funnel using stakeholder criteria. NanoImpact 17:100191

    Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287

    Article  CAS  Google Scholar 

  • Grieger K, Hansen SF, Baun A (2009) The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 3:1–12

    Article  Google Scholar 

  • Grieger KD, Linkov I, Hansen SF et al (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6:196–212

    Article  Google Scholar 

  • Grieger K, Jones JL, Hansen SF et al (2019) What are the key best practices from nanomaterial risk analysis that may be relevant for other emerging technologies? Nat Nanotechnol 14:998–1001

    Article  CAS  Google Scholar 

  • Handy RD, Cornelis G, Fernandes TF et al (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  Google Scholar 

  • Hansen SF, Maynard A, Baun A et al (2008) Late lessons from early warnings for nanotechnology Commentary. Nat Nanotechnol 3:444–447

    Article  CAS  Google Scholar 

  • Hansen SF, Maynard A, Baun A et al (2013a) Nanotechnology—Early lessons from early warnings. Chapter 22 in “Late Lessons from Early Warnings vol. II”. European Environment Agency, European Commission, Copenhagen, Denmark

    Google Scholar 

  • Hansen SF, Nielsen K, Knudsen N et al (2013b) Operationalization and application of “early warning signs” to screen nanomaterials for harmful properties. Environ Sci Process Impacts 15:190–203

    Google Scholar 

  • Hansen SF, Jensen KA, Baun A (2013c) NanoRiskCat—A conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanoparticle Res 16: 2195

    Google Scholar 

  • Hansen SF (2017) React now regarding nanomaterial regulation. Nat Nanotechnol 12:714–716

    Article  CAS  Google Scholar 

  • Hansen SF, Hjorth R, Skjolding LM et al (2017) A critical analysis of the environmental Dossiers in the OECD sponsorship programme for manufactured nanomaterials. Environ Sci Nano 4:282–291

    Article  CAS  Google Scholar 

  • Hansen SF, Hansen OFH, Nielsen MB (2020) Advances and challenges towards consumerization of nanomaterials. Nat Nanotechnol 15:964–965

    Article  CAS  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T et al (2010) Algal testing of titanium dioxide nanoparticles-testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    Article  CAS  Google Scholar 

  • Hartmann NB, Engelbreckt C, Zhang J et al (2013) The challenges of testing insoluble metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology 7:1082–1094

    Article  CAS  Google Scholar 

  • Hartmann NB, Ågerstrand M, Lützhøft HCH et al (2017) NanoCred: a transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials—Relevance and reliability revisited. NanoImpact 6:81–88

    Article  Google Scholar 

  • Hjorth R (2016) Environmental risk assessment and management of engineered nanomaterials—The role of ecotoxicity testing (PhD Thesis) Technical University of Denmark, Kgs. Lyngby, Denmark

    Google Scholar 

  • Hjorth R, Sørensen SN, Olsson ME et al (2016) A certain shade of green: can algal pigments reveal shading effects of nanoparticles? Integr Environ Assess Manag 12:200–202

    Article  Google Scholar 

  • Hjorth R, Skjolding LM, Sørensen SN et al (2017) Regulatory adequacy of aquatic ecotoxicity testing of nanomaterials. NanoImpact 8:28–37

    Article  Google Scholar 

  • Leong HS, Butler KS, Brinker CJ et al (2019) On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol 14:626–635

    Article  Google Scholar 

  • Hristozov DR, Gottardo S, Critto A et al (2012) Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6:880–898

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Baun A, Cupi D et al (2016) Regulatory ecotoxicity testing of nanomaterials—Proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology 10:1442–14447

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Herrchen M, Schlich K et al (2015) Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures. Environ Sci Eur 27:1–12

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • ISO (2012) Water quality - Fresh water algal growth inhibition test with unicellular green algae. ISO 8692:2012. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Ivask A, Juganson K, Bondarenko O et al (2014) Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8:7–71

    Article  Google Scholar 

  • Juganson K, Ivask A, Blinova I et al (2015) NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–1804

    Article  CAS  Google Scholar 

  • Lützhøft HCH, Hartmann NB, Brinch A et al (2015) Environmental effects of engineered nanomaterials: estimations of predicted no-effect concentrations (PNECs). Danish Environmental Protection Agency, Copenhagen, Denmark

    Google Scholar 

  • Lynch I, Weiss C, Valsami-Jones E (2014) A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 9:266–270

    Article  CAS  Google Scholar 

  • Nasser F, Lynch I (2016) Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J Proteomics 137:45–51

    Article  CAS  Google Scholar 

  • Maynard A (2006) Nanotechnology: a research strategy for addressing risk, project on emerging nanotechnologies, Report No. PEN 3; Woodrow Wilson International Center for Scholars: Washington, DC

    Google Scholar 

  • Nielsen MB, Baun A, Mackevica A et al (2021) European nanomaterial regulation—Methodological challenges for registration and safety assessment. Environ Sci Nano 8:731–747

    Article  CAS  Google Scholar 

  • Nguyen MK, Moon J-Y, Lee Y-C (2020) Microalgal ecotoxicity of nanoparticles: an updated review. Ecotoxicol Environ Saf 201:110781

    Google Scholar 

  • Notter DA, Mitrano DM, Nowack B (2014) Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ Toxicol Chem 33:2733–2739

    Article  CAS  Google Scholar 

  • Nowack B (2017) Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. Nanoimpact 8:38–47

    Article  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C(60)) induce oxidative stress in the brain of Juvenile Largemouth Bass. Environ Health Perspect 112:1058–1062

    Article  Google Scholar 

  • OECD (2005) Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment [ENV/JM/MONO(2005)14], Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  • OECD (2007) Current Developments/Activities on the Safety of Manufactured Nanomaterials/Nanotechnologies, Tour de table at the 2nd meeting of the working party on manufactured nanomaterials, Berlin, Germany, April 25–27, 2007; Report No. ENV/JM/MONO(2007)16. Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  • OECD (2011) Test No. 201: freshwater alga and cyanobacteria, growth inhibition test. Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  • OECD (2020) Guidance document on aquatic and sediment toxicological testing of nanomaterials. Series on Testing and Assessment No. 317. ENV/JM/MONO(2020)8. Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  • Oomen AG, Steinhäuser KG, Bleeker EAJ et al (2018) Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 9:1–13

    Article  Google Scholar 

  • Pang C, Skjolding LM, Selck H et al (2020) A “point-of-entry” bioaccumulation study of nanoscale copper phthalocyanine in aquatic organisms. Environ Sci Nano 8:554–564

    Article  Google Scholar 

  • Palmqvist A, Baker L, Forbes VE et al (2015) Nanomaterial environmental risk assessment. Integr Environ Assess Manag 11:519

    Article  Google Scholar 

  • Peijnenburg WJGM, Baalousha M, Chen J et al (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45:2084–2134

    Article  CAS  Google Scholar 

  • Petersen EJ, Goss GG, von der Kammer F et al (2021) New guidance brings clarity to environmental hazard and behaviour testing of nanomaterials. Nat Nanotechnol 16:482–483

    Article  CAS  Google Scholar 

  • Petersen EJ, Diamond SA, Kennedy AJ et al (2015) Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49:9532–9547

    Article  CAS  Google Scholar 

  • SCENIHR (2007) The appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials; European Commission Health and Consumer Protection Directorate-General, Directorate C—Public Health and Risk Assessment, C7—Risk Assessment: Scientific Committee on Emerging and Newly Identified Health Risks Brussels, Belgium

    Google Scholar 

  • SCENIHR (2009) Risk assessment of products of nanotechnologies; European Commission Health and Consumer Protection Directorate-General, Directorate C—Public Health and Risk Assessment, C7—Risk Assessment: Scientific Committee on Emerging and Newly Identified Health Risks Brussels, Belgium

    Google Scholar 

  • Semenzin E, Lanzellotto E, Hristozov D et al (2015) Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study. Environ Toxicol Chem 34:2644–2659

    Article  CAS  Google Scholar 

  • Sekine R, Khurana K, Vasilev K et al (2015) Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: test container effects and recommendations. Nanotoxicology 9:1005–1012

    Article  Google Scholar 

  • Skjolding LM, Sørensen SN, Hartmann NB et al (2016) A critical review of aquatic ecotoxicity testing of nanoparticles—The quest for disclosing nanoparticle effects. Angew Chem Int Ed 55:15224–15239

    Article  CAS  Google Scholar 

  • Stone V, Hankin S, Aitken R et al (2010a) Engineered nanoparticles: Review of health and environmental safety (ENRHES) (RPRT), Engineered nanoparticles. European Commission, Brussels, Belgium

    Google Scholar 

  • Stone V, Nowack B, Baun A et al (2010b) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D et al (2016) Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance. J Nanopart Res 18:1–13

    Article  CAS  Google Scholar 

  • Syberg K, Hansen SF (2015) Environmental risk assessment of chemicals and nanomaterials—The best foundation for regulatory decision-making? Sci Total Environ 541:784–794

    Article  Google Scholar 

  • Sørensen SN, Wigger H, Zabeo A et al (2020) Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials—A case study for silver and titanium dioxide representative materials. Aquatic Toxicol 225:105543

    Google Scholar 

  • Sørensen SN, Baun A (2015) Controlling silver nanoparticle exposure in algal toxicity testing—A matter of timing. Nanotoxicology 9:201–209

    Article  Google Scholar 

  • Sørensen SN, Hjorth R, Giron Delgado C et al (2015) Nanoparticle ecotoxicity—Physical and/or chemical effects? Integr Environ Assess Manag 11:722–724

    Article  Google Scholar 

  • Sørensen SN, Engelbrekt C, Lützhøft HCH et al (2016) A multi-method approach for disclosing algal toxicity of platinum nanoparticles. Environ Sci Technol 50:10635–10643

    Article  Google Scholar 

  • Sørensen SN, Baun A, Burkard M et al (2019) Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation stage-gate process. Environmental Sci Nano 6:505–518

    Article  Google Scholar 

  • US EPA (2007) Nanotechnology White Paper, Report No. EPA 100/B-07/001; Science Policy Council, United States Environmental Protection Agency: Washington, DC

    Google Scholar 

  • Van Hoecke K, Quik JT, Mankiewicz-Boczek J et al (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

    Article  Google Scholar 

  • Von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8:605–630

    Article  Google Scholar 

  • Walker W, Harremoes P, Rotmans J et al (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. J Integr Asses 4:5–17

    Article  Google Scholar 

  • Wickson F, Hartmann NB, Hjorth R et al (2014) Balancing scientific tensions. Nat Nanotechnol 9:870

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Baun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baun, A., Grieger, K. (2022). Environmental Risk Assessment of Emerging Contaminants—The Case of Nanomaterials. In: Guo, LH., Mortimer, M. (eds) Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants. Springer, Singapore. https://doi.org/10.1007/978-981-16-9116-4_15

Download citation

Publish with us

Policies and ethics