Skip to main content

Advertisement

Log in

IL-6 can singlehandedly drive many features of frailty in mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is a geriatric syndrome characterized by age-related declines in function and reserve resulting in increased vulnerability to stressors. The most consistent laboratory finding in frail subjects is elevation of serum IL-6, but it is unclear whether IL-6 is a causal driver of frailty. Here, we characterize a new mouse model of inducible IL-6 expression (IL-6TET-ON/+ mice) following administration of doxycycline (Dox) in food. In this model, IL-6 induction was Dox dose-dependent. The Dox dose that increased IL-6 levels to those observed in frail old mice directly led to an increase in frailty index, decrease in grip strength, and disrupted muscle mitochondrial homeostasis. Littermate mice lacking the knock-in construct failed to exhibit frailty after Dox feeding. Both naturally old mice and young Dox-induced IL-6TET-ON/+ mice exhibited increased IL-6 levels in sera and spleen homogenates but not in other tissues. Moreover, Dox-induced IL-6TET-ON/+ mice exhibited selective elevation in IL-6 but not in other cytokines. Finally, bone marrow chimera and splenectomy experiments demonstrated that non-hematopoietic cells are the key source of IL-6 in our model. We conclude that elevated IL-6 serum levels directly drive age-related frailty, possibly via mitochondrial mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akki A, Yang H, Gupta A, Chacko VP, Yano T, Leppo MK, et al. Skeletal muscle ATP kinetics are impaired in frail mice. Age (Dordr). 2013/05/22. Springer Netherlands. 2014;36(1):21–30. https://doi.org/10.1007/s11357-013-9540-0.

    Article  CAS  Google Scholar 

  2. Baune BT, Rothermundt M, Ladwig KH, Meisinger C, Berger K. Systemic inflammation (Interleukin 6) predicts all-cause mortality in men: results from a 9-year follow-up of the MEMO Study. Age (Dordr). 2011;33(2):209–17. https://doi.org/10.1007/s11357-010-9165-5.

    Article  CAS  Google Scholar 

  3. Daley JM et al (2007) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. https://doi.org/10.1189/jlb.0407247.

  4. Damas P et al (1991) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity, pp. 356–362.

  5. Drechsler S et al (2018) Splenectomy modulates early immuno-inflammatory responses to trauma-hemorrhage and protects mice against secondary sepsis. Sci Rep. Springer US, (September), pp. 1–12. https://doi.org/10.1038/s41598-018-33232-1.

  6. Eger K, Hermes M, Uhlemann K, Rodewald S, Ortwein J, Brulport M, et al. 4-Epidoxycycline: an alternative to doxycycline to control gene expression in conditional mouse models. Biochem Biophys Res Commun. 2004;323(3):979–86. https://doi.org/10.1016/j.bbrc.2004.08.187.

    Article  CAS  PubMed  Google Scholar 

  7. Eskilsson A, Mirrasekhian E, Dufour S, Schwaninger M, Engblom D, Blomqvist A. Immune-induced fever is mediated by IL-6 receptors on brain endothelial cells coupled to STAT3-dependent induction of brain endothelial prostaglandin synthesis. J Neurosci. 2014;34(48):15957–61. https://doi.org/10.1523/JNEUROSCI.3520-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci United States. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  9. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990;63(6):1149–57. https://doi.org/10.1016/0092-8674(90)90411-7.

    Article  CAS  PubMed  Google Scholar 

  10. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. Nature Publishing Group. 2015;16(5):448–57. https://doi.org/10.1038/ni.3153.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson MJ, et al. A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. GeroScience. 2017;39(2):187–98. https://doi.org/10.1007/s11357-017-9975-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121(9):3375–83. https://doi.org/10.1172/JCI57158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kane AE, Sinclair DA. Frailty biomarkers in humans and rodents: current approaches and future advances. Mech Ageing Dev. 2019;180:117–28. https://doi.org/10.1016/j.mad.2019.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kang C, Ji LL. Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci. 2012;1271(1):110–7. https://doi.org/10.1111/j.1749-6632.2012.06738.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ko F, Abadir P, Marx R, Westbrook R, Cooke C, Yang H, et al. Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse. Exp Gerontol. 2016;73:23–7. https://doi.org/10.1016/j.exger.2015.11.010.

    Article  CAS  PubMed  Google Scholar 

  16. Ko F, Yu Q, Xue QL, Yao W, Brayton C, Yang H, et al. Inflammation and mortality in a frail mouse model. Age (Dordr). 2011/06/02. Springer Netherlands. 2012;34(3):705–15. https://doi.org/10.1007/s11357-011-9269-6.

    Article  CAS  Google Scholar 

  17. Kuchel GA. Frailty and resilience as outcome measures in clinical trials and geriatric care: are we getting any closer? J Am Geriatr Soc. 2018;66:1451–4. https://doi.org/10.1111/jgs.15441.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. United States. 1993;75(2):263–74. https://doi.org/10.1016/0092-8674(93)80068-p.

    Article  PubMed  Google Scholar 

  19. Laffon B (2018) Frailty in older adults is associated with plasma concentrations of inflammatory mediators but not with lymphocyte subpopulations, 9(May), pp. 1–9. https://doi.org/10.3389/fimmu.2018.01056.

  20. Liu H, Graber TG, Ferguson-Stegall L, Thompson LV. Clinically relevant frailty index for mice. J Gerontol A Biol Sci Med Sci. 2014;69(12):1485–91. https://doi.org/10.1093/gerona/glt188.

    Article  PubMed  Google Scholar 

  21. Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol- Ser A Biol Sci Med Sci. 2006;61(6):575–84. https://doi.org/10.1093/gerona/61.6.575.

    Article  Google Scholar 

  22. Miller RA, Nadon NL. Principles of animal use for gerontological research. J Gerontol: Ser A. 2000;55(3):B117–23. https://doi.org/10.1093/gerona/55.3.B117.

    Article  CAS  Google Scholar 

  23. Moeniralam HS, Bemelman WA, Endert E, Koopmans R, Sauerwein HP, Romijn JA. The decrease in nonsplenic interleukin-6 (IL-6) production after splenectomy indicates the existence of a positive feedback loop of IL-6 production during endotoxemia in dogs. Infect Immun. 1997;65(6):2299–305. https://doi.org/10.1128/iai.65.6.2299-2305.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohler MJ, Fain MJ, Wertheimer AM, Najafi B, Nikolich-Žugich J. The Frailty syndrome: clinical measurements and basic underpinnings in humans and animals. Exp Gerontol. England. 2014;54:6–13. https://doi.org/10.1016/j.exger.2014.01.024.

    Article  PubMed  Google Scholar 

  25. Morley JE, Vellas B, Abellan van Kan G, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–7. https://doi.org/10.1016/j.jamda.2013.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Passos F et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. https://doi.org/10.1038/ncomms5172.

  27. Pedersen BK, Steensberg A, Schjerling P. Muscle-derived interleukin-6: possible biological effects. J Physiol. 2001;536(2):329–37. https://doi.org/10.1111/j.1469-7793.2001.0329c.xd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rockwood K, Hogan DB, MacKnight C. Conceptualisation and measurement of frailty in elderly people. Drugs Aging. New Zealand. 2000;17(4):295–302. https://doi.org/10.2165/00002512-200017040-00005.

    Article  CAS  PubMed  Google Scholar 

  29. Sikka G, Miller KL, Steppan J, Pandey D, Jung SM, Fraser CD III, et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. Exp Gerontol. 2013;48(2):128–35. https://doi.org/10.1016/j.exger.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka KF, Ahmari SE, Leonardo ED, Richardson-Jones JW, Budreck EC, Scheiffele P, et al. Flexible Accelerated STOP Tetracycline Operator-Knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry. Elsevier Inc. 2010;67(8):770–3. https://doi.org/10.1016/j.biopsych.2009.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Epps P, et al. Frailty has a stronger association with inflammation than age in older veterans. Immun Ageing. 2016;13(1):1–9. https://doi.org/10.1186/s12979-016-0082-z.

    Article  Google Scholar 

  32. von Zglinicki T, Varela-Nieto I, Brites D, Karagianni N, Ortolano S, Georgopoulos S, et al. Frailty in mouse ageing: a conceptual approach. Mech Ageing Dev. Ireland. 2016;160:34–40. https://doi.org/10.1016/j.mad.2016.07.004.

    Article  Google Scholar 

  33. Walston J, Fedarko N, Yang H, Leng S, Beamer B, Espinoza S, et al. The physical and biological characterization of a frail mouse model. J Gerontol A Biol Sci Med Sci. 2008;63(4):391–8. https://doi.org/10.1093/gerona/63.4.391.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whitehead JC, Hildebrand BA, Sun M, Rockwood MR, Rose RA, Rockwood K, et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol- Ser A Biol Sci Med Sci. 2014;69(6):621–32. https://doi.org/10.1093/gerona/glt136.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Bowman Professorship in Medical Sciences and by generous philanthropic support of Sperry and Donnalyn van Langevelt to J. N-Ž.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Nikolich-Žugich.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 259 kb)

ESM 2

(PDF 51.9 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jergović, M., Thompson, H.L., Bradshaw, C.M. et al. IL-6 can singlehandedly drive many features of frailty in mice. GeroScience 43, 539–549 (2021). https://doi.org/10.1007/s11357-021-00343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00343-z

Keywords

Navigation