Skip to main content

Advertisement

Log in

Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts E, Maroteaux G, Loos M, Koopmans B, Kovačević J, Smit AB, Verhage M, Sluis Sv, Neuro-BSIK Mouse Phenomics Consortium (2015) The light spot test: measuring anxiety in mice in an automated home-cage environment. Behav Brain Res 294:123–130

    Article  PubMed  Google Scholar 

  • Arakawa H, Iguchi Y (2018) Ethological and multi-behavioral analysis of learning and memory performance in laboratory rodent models. Neurosci Res S0168-0102(17):30714–9. https://doi.org/10.1016/j.neures.2018.02.001

  • Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39(2):129–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayala JE, Bracy DP, McGuinness OP, Wasserman DH (2006) Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55(2):390–397

    Article  PubMed  CAS  Google Scholar 

  • Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP, for the NIH Mouse Metabolic Phenotyping Center Consortium (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61(6):1315–1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beauchet O, Launay CP, Sekhon H, Barthelemy JC, Roche F, Chabot J, Levinoff EJ, Allali G (2017) Association of increased gait variability while dual tasking and cognitive decline: results from a prospective longitudinal cohort pilot study. Geroscience 39:439–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, Wolfson C (2007) Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci 62(7):731–737

  • Dahle CL, Jacobs BS, Raz N (2009) Aging, vascular risk, and cognition: blood glucose, pulse pressure, and cognitive performance in healthy adults. Psychol Aging 24(1):154–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Destici E, Jacobs EH, Tamanini F, Loos M, van der Horst GTJ, Oklejewicz M (2013) Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. PLoS One 8(12):e83602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST, van Deijk ALF, van de Kreeke A, Jacobs G, Vuong C, Klooster J, Kamermans M, Wortel J, Loos M, Wisse LE, Scheper GC, Abbink TEM, Heine VM, van der Knaap MS (2016) Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest 126(4):1512–1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Forster MJ, Lal H (1999) Estimating age-related changes in psychomotor function: influence of practice and of level of caloric intake in different genotypes. Neurobiol Aging 20(2):167–176

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, Defazio RA, Bizon JL (2012) Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Freeman WM, VanGuilder HD, Bennett C, Sonntag WE (2009) Cognitive performance and age-related changes in the hippocampal proteome. Neuroscience 159(1):183–195

    Article  PubMed  CAS  Google Scholar 

  • Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (2001) Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res 125(1–2):269–277

    Article  PubMed  CAS  Google Scholar 

  • Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30(7):271–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, et al (2018) Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem S1074-7427(18):30001–7. https://doi.org/10.1016/j.nlm.2018.01.001

  • Hanell A, Marklund N (2014) Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci 8:252

  • Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13(2):273–282

    Article  PubMed  CAS  Google Scholar 

  • Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Huffman DM, Schafer MJ, LeBrasseur NK (2016) Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 86:73–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Myers L, Wyckoff J, Cherry KE, Jazwinski SM (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39(1):83–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ko SU, Jerome GJ, Simonsick EM, Studenski S, Ferrucci L (2018) Differential gait patterns by falls history and knee pain status in healthy older adults: results from the Baltimore longitudinal study of aging. J Aging Phys Act:1–18

  • Koopmans B, Smit AB, Verhage M, Loos M (2017) AHCODA-DB: a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data. BMC Bioinformatics 18(1):200

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramvis I et al (2013) Hyperactivity, perseveration and increased responding during attentional rule acquisition in the fragile X mouse model. Front Behav Neurosci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA, Owen DB, Humphries KM, Kinter M, Freeman WM, Szweda LI, van Remmen H, Sonntag WE (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab 9:141–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longordo F, Fan J, Steimer T, Kopp C, Lüthi A (2011) Do mice habituate to “gentle handling?” A comparison of resting behavior, corticosterone levels and synaptic function in handled and undisturbed C57BL/6J mice. Sleep 34(5):679–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro-BSIK Mouse Phenomics Consortium, Verhage M, Smit AB (2014) Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring. PLoS One 9(9):e108563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loos M et al (2015) Within-strain variation in behavior differs consistently between common inbred strains of mice. Mamm Genome 26(7–8):348–354

    Article  PubMed  Google Scholar 

  • Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, Berthomier C, Borgwardt S, Cajochen C, Schmidt C (2018) Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement. Sci Rep 8(1):970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandillo S, Tucci V, Hölter SM, Meziane H, Banchaabouchi MA, Kallnik M, Lad HV, Nolan PM, Ouagazzal AM, Coghill EL, Gale K, Golini E, Jacquot S, Krezel W, Parker A, Riet F, Schneider I, Marazziti D, Auwerx J, Brown SDM, Chambon P, Rosenthal N, Tocchini-Valentini G, Wurst W (2008) Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 34(3):243–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Maroteaux G, Loos M, van der Sluis S, Koopmans B, Aarts E, van Gassen K, Geurts A, The NeuroBSIK Mouse Phenomics Consortium, Largaespada DA, Spruijt BM, Stiedl O, Smit AB, Verhage M (2012) High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav 11(7):772–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin-Montalvo A et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    Article  PubMed  CAS  Google Scholar 

  • McCoy JG, Strecker RE (2011) The cognitive cost of sleep lost. Neurobiol Learn Mem 96(4):564–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, Pankratz VS, Geda YE, Machulda MM, Ivnik RJ, Knopman DS, Boeve BF, Rocca WA, Petersen RC (2013) Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 68(8):929–937

    Article  PubMed  Google Scholar 

  • Okonkwo OC, Alosco ML, Griffith HR, Mielke MM, Shaw LM, Trojanowski JQ, Tremont G, Alzheimer's Disease Neuroimaging Initiative (2010a) Cerebrospinal fluid abnormalities and rate of decline in everyday function across the dementia spectrum: normal aging, mild cognitive impairment, and Alzheimer disease. Arch Neurol 67(6):688–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Okonkwo OC, Cohen RA, Gunstad J, Tremont G, Alosco ML, Poppas A (2010b) Longitudinal trajectories of cognitive decline among older adults with cardiovascular disease. Cerebrovasc Dis 30(4):362–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4(8):487–499

    Article  PubMed  Google Scholar 

  • Remmelink E, Loos M, Koopmans B, Aarts E, van der Sluis S, Smit AB, Verhage M, Neuro-BSIK Mouse Phenomics Consortium (2015) A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment. Behav Brain Res 283:53–60

    Article  PubMed  Google Scholar 

  • Remmelink E, Aartsma-Rus A, Smit AB, Verhage M, Loos M, van Putten M (2016) Cognitive flexibility deficits in a mouse model for the absence of full-length dystrophin. Genes Brain Behav 15(6):558–567

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Fischer KE, Speakman JR, de Cabo R, Mitchell SJ, Peterson CA, Rabinovitch P, Chiao YA, Taffet G, Miller RA, Rentería RC, Bower J, Ingram DK, Ladiges WC, Ikeno Y, Sierra F, Austad SN (2016) Measures of healthspan as indices of aging in mice—a recommendation. J Gerontol A Biol Sci Med Sci 71(4):427–430

    Article  PubMed  Google Scholar 

  • Rosso AL, Verghese J, Metti AL, Boudreau RM, Aizenstein HJ, Kritchevsky S, Harris T, Yaffe K, Satterfield S, Studenski S, Rosano C (2017) Slowing gait and risk for cognitive impairment: the hippocampus as a shared neural substrate. Neurology 89(4):336–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Schorr A, Carter C, Ladiges W (2018) The potential use of physical resilience to predict healthy aging. Pathobiol Aging Age Relat Dis 8(1):1403844

    Article  PubMed  Google Scholar 

  • Soultoukis GA, Partridge L (2016) Dietary protein, metabolism, and aging. Annu Rev Biochem 85:5–34

    Article  PubMed  CAS  Google Scholar 

  • Suire CN, Eitan E, Shaffer NC, Tian Q, Studenski S, Mattson MP, Kapogiannis D (2017) Walking speed decline in older adults is associated with elevated pro-BDNF in plasma extracellular vesicles. Exp Gerontol 98:209–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tanila H (2017) Testing cognitive functions in rodent disease models: Present pitfalls and future perspectives. Behav Brain Res S0166-4328(17)30634–4. https://doi.org/10.1016/j.bbr.2017.05.040

  • VanGuilder Starkey HD, Sonntag WE, Freeman WM (2013) Increased hippocampal NgR1 signaling machinery in aged rats with deficits of spatial cognition. Eur J Neurosci 37(10):1643–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • VanGuilder HD, Farley JA, Yan H, van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43(1):201–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson NL et al (2010) Executive function, memory, and gait speed decline in well-functioning older adults. J Gerontol A Biol Sci Med Sci 65(10):1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R et al (2001) Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci 56 Spec No 1:20–33

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O'Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15(3):428–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding sources: T32AG052363; NIH R01AG038747; R01NS056218; R01AG057424 to WES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreemathi Logan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logan, S., Owen, D., Chen, S. et al. Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice. GeroScience 40, 123–137 (2018). https://doi.org/10.1007/s11357-018-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-018-0019-x

Keywords

Navigation