Skip to main content

Advertisement

Log in

Influence of exercise intensity in older persons with unchanged habitual nutritional intake: skeletal muscle and endocrine adaptations

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Long-term adherence to training programmes is difficult to attain. Yet, the benefits of exercise to general health and well-being are undeniable. Any measure to demonstrate the minimum required exercise for maximal benefit to a person is a promising avenue towards increasing the uptake and adherence to physical activity for the general public. The purpose of this study was to compare the effects of two different intensities of resistance training in healthy older adults. We hypothesised that compared to high-intensity resistance exercise, relatively low training intensity could also improve in vivo markers of healthy physiologic and endocrine functions in previously sedentary older individuals. Thirty (out of a possible 34 recruited) older adults were randomly assigned to low (LowR, i.e. ∼40% one repetition maximum (1RM)) versus high-resistance training (HighR, i.e. ∼80% 1RM) for 12 weeks. Neither intervention significantly impacted upon body composition markers including: body mass index (BMI), waist/hip ratio and bioelectric impedance. Muscle strength data showed an advantage for the HighR protocol with 51 ± 4% and 22.4 ± 10.2% (P < 0.05) improvements in 1RM strength and bilateral knee extension torque, respectively, compared with 17 ± 1% and 10.3 ± 4.7% (P < 0.05) increments in 1RM strength and bilateral torque in the LowR group. Unilateral torque did not change significantly in either group. Quadriceps muscle thickness data also showed a significantly greater benefit of the HighR protocol (5.8 ± 2.6% increase) compared with the LowR protocol (no change). Functional ability tests, including Get-up-and-go (GUG), Standing from lying and the 6-min walk, showed changes of −11.6 ± 4.8%, −15.6% and 8.5 ± 1.7% (P < 0.05), respectively, in HighR compared with only one significant improvement in the LowR, namely a −10.8 ± 3% (P < 0.05) improvement in the GUG test. Overnight fasting serum levels of IGFBP-3 increased, NPY decreased and TNF-α decreased significantly in the LowR group. Serum levels of glucose increased and NPY decreased significantly in HighR. Circulating levels of I, IL-6 and IGF-1 did not change with either intervention. In vivo physiologic changes show functional advantages for older persons carrying out high-resistance training. At the endocrine level, such an advantage is not clear. In fact, in terms of changes in sera levels of fasting glucose, IGFBP-3 and TNF-α, there appears to be an advantage to carrying out the lower intensity exercises for the aged populations where endocrine adaptations are key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamczak M, Rzepka E, Chudek J, Wiecek A (2005) Ageing and plasma adiponectin concentration in apparently healthy males and females. Clin Endocrinol (Oxf) 62(1):114–118

    Article  CAS  Google Scholar 

  • Balagopal P, Proctor D, Nair KS (1997) Sarcopenia and hormonal changes. Endocrine 7(1):57–60

    Article  CAS  PubMed  Google Scholar 

  • Bales CW, Ritchie CS (2002) Sarcopenia, weight loss, and nutritional frailty in the elderly. Annu Rev Nutr 22:309–323

    Article  CAS  PubMed  Google Scholar 

  • Baranowska B, Bik W, Baranowska-Bik A, Wolinska-Witort E, Szybinska A, Martynska L et al (2006) Neuroendocrine control of metabolic homeostasis in Polish centenarians. J Physiol Pharmacol 57(Suppl 6):55–61

    PubMed  Google Scholar 

  • Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C (1999) Responses of total and free insulin-like growth factor-I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta Physiol Scand 165(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Berrigan D, Potischman N, Dodd KW, Hursting SD, Lavigne J, Barrett JC et al (2009) Race/ethnic variation in serum levels of IGF-I and IGFBP-3 in US adults. Growth Horm IGF Res 19:146–155

    Article  CAS  PubMed  Google Scholar 

  • Brabant G, Wallaschofski H (2007) Normal levels of serum IGF-I: determinants and validity of current reference ranges. Pituitary 10(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Butcher SK, Lord JM (2004) Stress responses and innate immunity: aging as a contributory factor. Aging Cell 3(4):151–160

    Article  CAS  PubMed  Google Scholar 

  • Carmeli E, Reznick AZ, Coleman R, Carmeli V (2000) Muscle strength and mass of lower extremities in relation to functional abilities in elderly adults. Gerontology 46(5):249–257

    Article  CAS  PubMed  Google Scholar 

  • Chandler JM, Duncan PW, Kochersberger G, Studenski S (1998) Is lower extremity strength gain associated with improvement in physical performance and disability in frail, community-dwelling elders? Arch Phys Med Rehabil 79(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Charette SL, McEvoy L, Pyka G, Snow-Harter C, Guido D, Wiswell RA et al (1991) Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70(5):1912–1916

    CAS  PubMed  Google Scholar 

  • Chin APMJ, van Uffelen JG, Riphagen I, van Mechelen W (2008) The functional effects of physical exercise training in frail older people: a systematic review. Sports Med 38(9):781–793

    Article  Google Scholar 

  • Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM et al (1992) Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol 72(5):1780–1786

    CAS  PubMed  Google Scholar 

  • Crewther B, Keogh J, Cronin J, Cook C (2006) Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med 36(3):215–238

    Article  PubMed  Google Scholar 

  • Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95(4):1717–1727

    CAS  PubMed  Google Scholar 

  • Earles DR, Judge JO, Gunnarsson OT (2001) Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil 82(7):872–878

    Article  CAS  PubMed  Google Scholar 

  • Eliakim A, Moromisato M, Moromisato D, Brasel JA, Roberts C Jr, Cooper DM (1997) Increase in muscle IGF-I protein but not IGF-I mRNA after 5 days of endurance training in young rats. Am J Physiol 273(4 Pt 2):R1557–R1561

    CAS  PubMed  Google Scholar 

  • Ferri A, Scaglioni G, Pousson M, Capodaglio P, Van Hoecke J, Narici MV (2003) Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiol Scand 177(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263(22):3029–3034

    Article  CAS  PubMed  Google Scholar 

  • Fielding RA (1995) The role of progressive resistance training and nutrition in the preservation of lean body mass in the elderly. J Am Coll Nutr 14(6):587–594

    CAS  PubMed  Google Scholar 

  • Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64(3):1038–1044

    CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88(4):1321–1326

    CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Krivickas LS, Kim SK, Foldvari M, Roubenoff R (2003) Strength training in older women: early and late changes in whole muscle and single cells. Muscle Nerve 28(5):601–608

    Article  PubMed  Google Scholar 

  • Greenlund LJ, Nair KS (2003) Sarcopenia–consequences, mechanisms, and potential therapies. Mech Ageing Dev 124(3):287–299

    Article  CAS  PubMed  Google Scholar 

  • Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF (2001) Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J 15(2):475–482

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen K, Kraemer WJ, Newton RU, Alen M (2001) Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand 171(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Hartman JW, Moore DR, Phillips SM (2006) Resistance training reduces whole-body protein turnover and improves net protein retention in untrained young males. Appl Physiol Nutr Metab 31(5):557–564

    Article  CAS  PubMed  Google Scholar 

  • Hauser GJ, Danchak MR, Colvin MP, Hopkins RA, Wocial B, Myers AK et al (1996) Circulating neuropeptide Y in humans: relation to changes in catecholamine levels and changes in hemodynamics. Neuropeptides 30(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E et al (2004) Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metab 89(4):1844–1848

    Article  CAS  PubMed  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34

    CAS  PubMed  Google Scholar 

  • Jorgensen JO, Vahl N, Hansen TB, Thuesen L, Hagen C, Christiansen JS (1996) Growth hormone versus placebo treatment for one year in growth hormone deficient adults: increase in exercise capacity and normalization of body composition. Clin Endocrinol (Oxf) 45(6):681–688

    Article  CAS  Google Scholar 

  • Kitamura IT, Tokudome N, Yamanouchi M, Oshida K, Sato Y (2003) Effects of aerobic and resistance training on insulin action in the elderly. Geriatr Gerontol Int 3:50–55

    Article  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C et al (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM (2006) Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101(2):531–544

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35(4):339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M et al (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87(3):982–992

    CAS  PubMed  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50(Spec No):11–16

    PubMed  Google Scholar 

  • Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  CAS  PubMed  Google Scholar 

  • Lintsi M, Kaarma H, Kull I (2004) Comparison of hand-to-hand bioimpedance and anthropometry equations versus dual-energy X-ray absorptiometry for the assessment of body fat percentage in 17-18-year-old conscripts. Clin Physiol Funct Imaging 24(2):85–90

    Article  PubMed  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  • Moulias R, Meaume S, Raynaud-Simon A (1999) Sarcopenia, hypermetabolism, and aging. Z Gerontol Geriatr 32(6):425–432

    Article  CAS  PubMed  Google Scholar 

  • Mroszczyk-McDonald A, Savage PD, Ades PA (2007) Handgrip strength in cardiac rehabilitation: normative values, interaction with physical function, and response to training. J Cardiopulm Rehabil Prev 27(5):298–302

    PubMed  Google Scholar 

  • Narici MV, Maganaris CN, Reeves ND, Capodaglio P (2003) Effect of aging on human muscle architecture. J Appl Physiol 95(6):2229–2234

    CAS  PubMed  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D (2008) The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med 38(7):579–606

    Article  PubMed  Google Scholar 

  • Onambele GL, Maganaris CN, Mian OS, Tam E, Rejc E, McEwan IM et al (2008) Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J Biomech 41(15):3133–3138

    Article  PubMed  Google Scholar 

  • Pearson SJ, Onambele GN (2005) Acute changes in knee-extensors torque, fiber pennation, and tendon characteristics. Chronobiol Int 22(6):1013–1027

    Article  PubMed  Google Scholar 

  • Pearson SJ, Onambele GN (2006) Influence of time of day on tendon compliance and estimations of voluntary activation levels. Muscle Nerve 33(6):792–800

    Article  PubMed  Google Scholar 

  • Pearson SJ, Young A, Macaluso A, Devito G, Nimmo MA, Cobbold M et al (2002) Muscle function in elite master weightlifters. Med Sci Sports Exerc 34(7):1199–1206

    Article  PubMed  Google Scholar 

  • Poulin MJ, Vandervoort AA, Paterson DH, Kramer JF, Cunningham DA (1992) Eccentric and concentric torques of knee and elbow extension in young and older men. Can J Sport Sci 17(1):3–7

    CAS  PubMed  Google Scholar 

  • Prior BM, Cureton KJ, Modlesky CM, Evans EM, Sloniger MA, Saunders M et al (1997) In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol 83(2):623–630

    CAS  PubMed  Google Scholar 

  • Rennie MJ, Selby A, Atherton P, Smith K, Kumar V, Glover EL et al (2009) Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Scand J Med Sci Sports 20:5–9

    Article  Google Scholar 

  • Roubenoff R, Hughes VA, Dallal GE, Nelson ME, Morganti C, Kehayias JJ et al (2000) The effect of gender and body composition method on the apparent decline in lean mass-adjusted resting metabolic rate with age. J Gerontol A Biol Sci Med Sci 55(12):M757–M760

    CAS  PubMed  Google Scholar 

  • Ryan AS (2000) Insulin resistance with aging: effects of diet and exercise. Sports Med 30(5):327–346

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Zhang XJ, Wolfe RR (1996) TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol 270(5 Pt 1):E864–E872

    CAS  PubMed  Google Scholar 

  • Schlicht J, Camaione DN, Owen SV (2001) Effect of intense strength training on standing balance, walking speed, and sit-to-stand performance in older adults. J Gerontol A Biol Sci Med Sci 56(5):M281–M286

    CAS  PubMed  Google Scholar 

  • Schutte AE, Huisman HW, Schutte R, van Rooyen JM, Malan L, Malan NT (2007) Aging influences the level and functions of fasting plasma ghrelin levels: the POWIRS-Study. Regul Pept 139(1–3):65–71

    Article  CAS  PubMed  Google Scholar 

  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, Nair KS (2005) Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol 99(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Sipila S, Elorinne M, Alen M, Suominen H, Kovanen V (1997) Effects of strength and endurance training on muscle fibre characteristics in elderly women. Clin Physiol 17(5):459–474

    Article  CAS  PubMed  Google Scholar 

  • Skelton DA, Young A, Greig CA, Malbut KE (1995) Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J Am Geriatr Soc 43(10):1081–1087

    CAS  PubMed  Google Scholar 

  • Skelton DA, Young A, Greig CA (1997) Muscle function of women aged 65–89 years meeting two sets of health criteria. Aging (Milano) 9(1–2):106–111

    CAS  Google Scholar 

  • Taaffe DR, Duret C, Wheeler S, Marcus R (1999) Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc 47(10):1208–1214

    CAS  PubMed  Google Scholar 

  • Tonino RP (1989) Effect of physical training on the insulin resistance of aging. Am J Physiol 256(3 Pt 1):E352–E356

    CAS  PubMed  Google Scholar 

  • Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL et al (1999) Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol 86(1):195–201

    CAS  PubMed  Google Scholar 

  • Trappe T, Williams R, Carrithers J, Raue U, Esmarck B, Kjaer M et al (2004) Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J Physiol 554(Pt 3):803–813

    CAS  PubMed  Google Scholar 

  • Vandervoort AA, Kramer JF, Wharram ER (1990) Eccentric knee strength of elderly females. J Gerontol 45(4):B125–B128

    CAS  PubMed  Google Scholar 

  • Vaughan L, Zurlo F, Ravussin E (1991) Aging and energy expenditure. Am J Clin Nutr 53(4):821–825

    CAS  PubMed  Google Scholar 

  • Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154(3):557–568

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Nair KS (1990) Relationship of resting metabolic rate to body composition and protein turnover. Am J Physiol 258(6 Pt 1):E990–E998

    CAS  PubMed  Google Scholar 

  • Welle S, Totterman S, Thornton C (1996) Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci 51(6):M270–M275

    CAS  PubMed  Google Scholar 

  • Yang X, Jansson PA, Nagaev I, Jack MM, Carvalho E, Sunnerhagen KS et al (2004) Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun 317(4):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Yarasheski KE (2003) Exercise, aging, and muscle protein metabolism. J Gerontol A Biol Sci Med Sci 58(10):M918–M922

    PubMed  Google Scholar 

  • Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Lee GD, Ding L, Hu J, Qiu G, de Cabo R et al (2007) Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp Gerontol 42(8):733–744

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Leopoldine Onambélé-Pearson.

About this article

Cite this article

Onambélé-Pearson, G.L., Breen, L. & Stewart, C.E. Influence of exercise intensity in older persons with unchanged habitual nutritional intake: skeletal muscle and endocrine adaptations. AGE 32, 139–153 (2010). https://doi.org/10.1007/s11357-010-9141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9141-0

Keywords

Navigation