Skip to main content
Log in

Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many efforts have focused on the deterioration of historic buildings, and natural hydraulic lime mortar without admixture is less resistant to environmental agencies than a lime mortar with admixtures. A research study has been carried out to study the effect of carboxymethyl cellulose (CMC) and alccofine (AF) with the natural hydraulic lime mortars in improving the hydraulic properties, durability properties, and freeze–thaw resistance. The performance of lime mortars was evaluated with various additives. The experimental results indicated the combined effect of CMCs and AF in lime mortars’ compression testing in different stages. In blended mortars, the early compressive strength was increased. Also, mixed mortar exhibits stronger freeze–thaw resistance with a long healing period. These findings indicate that AF and CMC combination played an essential role in lime mortar (LM) properties, which is generally advantageous for restoration and conservation purposes, especially in historic structures in cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abhineet Godayal, Arjun Kapoor, Prashant Garg (2018) “Effect of alccofine, lime on geotechnical properties of cohesive soil"  6(2). https://doi.org/10.1729/IJCRT.17460

  • Aggelakopoulou E, Bakolas A, Moropoulou A (2011) Properties of Lime–metakaolin mortars for the restoration of historic masonries. Appl Clay Sci 53:15–19. https://doi.org/10.1016/j.clay.2011.04.005

    Article  CAS  Google Scholar 

  • Andrejkovicˇova´ S, Alves C, Velosa A, Rocha F (2015) Bentonite as a natural additive for lime and lime–metakaolin mortars used for restoration of adobe buildings. Cement Concr Compos 60:99–110

    Article  Google Scholar 

  • Arizzi A, Cutrone G (2018) "Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue: a petrographic and physical-mechanical study.” In Vol. 184 of Construction and building materials, 382–390.

  • Arizzi A, Cultrone G (2012) Air lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Constr Build Mater 31:135–143

    Article  Google Scholar 

  • Bakula’s A, Aggelakopoulou E, Anagnostopoulou S, Moropoulou A (2006) Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin–lime pastes. J Therm Anal Calorim 84(1):157–163. https://doi.org/10.1007/s10973-005-7262-y

    Article  CAS  Google Scholar 

  • Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E (2005) The effect of metakaolin on the corrosion behavior of cement mortars. Cem Concr Compos 27:125–130

    Article  CAS  Google Scholar 

  • Bhotla Harish NR, Dakshinamurthy MS, Jagannadha Rao K (2022) A study on mechanical properties of high strength concrete with alccofine as partial replacement of cement. Materials Today: Proceedings 52(3):1201–1210. https://doi.org/10.1016/j.matpr.2021.11.037

    Article  CAS  Google Scholar 

  • Binici H, Akcan M (2015) The Investigation of Physical and Mechanical Properties of Mortars used in Historical Buildings in Harran (Sanliurfa, Turkey). Eur J Eng Technol 3(5)

  • Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and a polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387. https://doi.org/10.1016/j.carbpol.2004.04.020

    Article  CAS  Google Scholar 

  • Borges C, Silva AS, Veiga R (2014) The durability of ancient lime mortars in humid environments. Constr Build Mater 66:606–620. https://doi.org/10.1016/j.conbuildmat.2014.05.019

    Article  Google Scholar 

  • Carlos, Sagrario, Blanco (2006) Modelling of slaked lime–metakaolin mortar engineering characteristics in terms of process variable. Cem  Concr Compos 28(5):458–467. https://doi.org/10.1016/j.cemconcomp.2005.12.006

    Article  CAS  Google Scholar 

  • Cizer C, Rodriguez-Navarro E, Ruiz-Agudo J, Elsen DV, Gemert KV, Balen (2012) Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated Lime. J Mater Sci 47(16):6151–6165. https://doi.org/10.1007/s10853-012-6535-7

    Article  CAS  Google Scholar 

  • Cizer O (2009) Competition between carbonation and hydration on the hardening of calcium hydroxide and calcium silicate binders, PhD thesis

  • Di Bella G, Fiore V, Galtieri G, Borsellino C, Valenza A (2014) Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Constr Build Mater 58:159–165

    Article  Google Scholar 

  • BS EN 1052–1055 (2005) Methods of test for masonry. Determination of bond strength by the bond wrench method. British Standards Institution, London, UK.

  • Fang S, Zhang H, Zhang B, Li G (2014) A study of Tung– oil–lime putty–A traditional lime based mortar. Int J Adhes 48:224–230

    Article  CAS  Google Scholar 

  • Fang S, Zhang K, Zhang H, Zhang B (2015) A study of traditional blood lime mortar for restoration of ancient buildings. Cem Concr Res 76:232–241

    Article  CAS  Google Scholar 

  • Faria-Rodrigues P (2009) Resistance to salts of lime and pozzolan mortars, RILEM Proceedings pro 067-Int. RILEM Workshop on Repair Mortars for Historic Masonry, 99–110.

  • Frías RM (2006) Study of hydrated phases present in a MK-lime system cured at 60ºC and 60 months of reaction. Cem Concr Res 36:827–831

    Article  Google Scholar 

  • Gameiro A, Santos Silva A (2012) Hydration products of lime-metakaolin pastes at ambiente temperature with ageing. Thermochim Acta 535:36–41

    Article  CAS  Google Scholar 

  • Gameiro AL, Silva AS, Veiga MR, Velosa AL (2012) Lime-metakaolin hydration products: a microscopy analysis. Materiali in Tehnologije 46(2):145–148

    CAS  Google Scholar 

  • García R, Vigil de la Villa R, Rodríguez O, Frías M (2010) Study of hydrated phases presente in calcined paper sludge (metakaolinite)/saturated CaO dissolution system cured at 40ºC and 28 days of reaction. Materials and Science Engineering A-Structures 527:3936–3941

    Article  Google Scholar 

  • Gour KA, Ramadoss R, Selvaraj T (2018) Revamping the traditional air lime mortar using the natural polymer–Areca nut for restoration application. Constr Build Mater 164:255–264. https://doi.org/10.1016/j.conbuildmat.2017.12.056

    Article  CAS  Google Scholar 

  • Grilo J, Santos Silva A, Faria P, Gameiro A, Veiga R, Velosa A (2014) “Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions.” In Construction and building materials, 287–294

  • Groot C, Larbi J (1999) Influence of water flow (reversal) on bond strength development in young masonry. Heron 44(2):63–78

    Google Scholar 

  • Gruber KA, Ramlochan T, Boddy A, Hooton RD, Thomas MD (2001) Increasing concrete durability with high-reactivity metakaolin. Cem Concr Compos 23:479–484

    Article  CAS  Google Scholar 

  • He C, Osbaeck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cem Concr Res 25(8):1691–1702. https://doi.org/10.1016/0008-8846(95)00165-4

    Article  CAS  Google Scholar 

  • IS 6932 (Part 11) (1983) Setting time of building lime. Bureau of Indian Standards, New Delhi, India .

  • IS: 6932 (Part VII) (1973) Methods of tests for building limes–determination of compressive and transverse INDA strengths. Bureau of Indian Standards, New Delhi, India.

  • IS: 6932 (Part VIII) (1973) Method of test for building limes, part VIII: determination of workability, Indian standards, New Delhi, India.

  • Iucolano F, Liguori B, Colella C (2013) Fibre–reinforced lime–based mortars: a possible resource for ancient masonry restoration. Constr Build Mater 38:785–789

    Article  Google Scholar 

  • Izaguirre A, Lanas J, Álvarez JI (2009) Effect of water-repellent admixtures on the behavior of aerial lime-based mortars. Cem Concr Res 39(11):1095–1104. https://doi.org/10.1016/j.cemconres.2009.07.026

    Article  CAS  Google Scholar 

  • Lanas J, Alvarez JI (2003) Masonry repair lime–based mortars: factors affecting the mechanical behavior. Cem Concr Res 33:1867–1876

    Article  CAS  Google Scholar 

  • Lanas J, Sierra R, Alvarez JI (2006) Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cem Concr Res 36(5):961–970. https://doi.org/10.1016/j.cemconres.2005.12.003

    Article  CAS  Google Scholar 

  • Lawrence RM, Mays TJ, Walker P, D’Ayala D (2006) Determination of carbonation profiles in non-hydraulic lime mortars using thermo gravimetric analysis. Thermochim Acta 444(2):179–189

    Article  CAS  Google Scholar 

  • Liu H, Zhao Y, Peng C, Song S, Alejandro Lo´pez–Valdivieso. (2016a) Improvement of compressive strength of lime mortar with carboxymethyl cellulose. J Mater Sci 51:9279–9286. https://doi.org/10.1007/s10853-016-0174-3

    Article  CAS  Google Scholar 

  • Liu H, Zhao Y, Peng C, Song S, Lopez-Valdivieso A (2016b) Improvement of compressive strength of lime mortar with carboxymethyl cellulose. J Mater Sci 51(20):9279–9286. https://doi.org/10.1007/s10853-016-0174-3

    Article  CAS  Google Scholar 

  • Liu H, Zhao Y, Peng C, Song S, Lopez-Valdivieso A (2018) Lime mortars—the role of carboxymethyl cellulose on the crystallization of calcium carbonate. Constr. Build. Mater. 168(Apr):169–177. https://doi.org/10.1016/j.conbuildmat.2018.02.119

    Article  CAS  Google Scholar 

  • Hui Liu, Wei Wang, Yunliang Zhao, and Shaoxian Song (2020)” Performance evaluation of lime mortars with metakaolin and CMC for restoration application” American Society of Civil Engineers. doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003377.

  • Love deep Singh Sambyal, Neeraj Sharma (2018) Utilizing fly ash and alccofine for efficient soil stabilization. Int J Sci Eng Res 9(3):2229-5518

  • Mishra PC, Singh VK, Narang KK, Singh NK (2003) Effect of carboxymethyl-cellulose on the properties of cement. Mater Sci Eng A 357(1):13–19. https://doi.org/10.1016/S0921-5093(02)00832-8

    Article  CAS  Google Scholar 

  • Moropoulou A, Bakolas A, Aggelakopoulou E (2004) Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420:135–140

    Article  CAS  Google Scholar 

  • Moropoulou A, Bakolas A, Moundoulas P, Aggelakopoulou E, Anagnostopoulou S (2005) Strength development and lime reaction in mortars for repairing historic masonries. Cem Concr Compos 27(2):289–294. https://doi.org/10.1016/j.cemconcomp.2004.02.017

    Article  CAS  Google Scholar 

  • Nežerka V, Slížková Z, Tesárek P, Plachý T, Frankeová D, Petráňová V (2014) Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cem Concr Res 64(Oct):17–29. https://doi.org/10.1016/j.cemconres.2014.06.006

    Article  CAS  Google Scholar 

  • Pavıa S, Hanley R (2010) Flexural bond strength of natural hydraulic lime mortar and clay brick. Mater Struct. https://doi.org/10.1617/s11527-009-9555-243:913-922

    Article  Google Scholar 

  • Pensini E, Yip CM, O’Carroll D, Sleep BE (2013) Carboxymethyl cellulose-binding to mineral substrates: Characterization by atomic force microscopy-based force spectroscopy and quartz-crystal microbalance with dissipation monitoring. J Colloid Interface Sci 402:58–67. https://doi.org/10.1016/j.jcis.2013.03.053

    Article  CAS  Google Scholar 

  • Perlot C, Rougeau P (2007) Intérêt des métakaolins dans les bétons, Monographie du Centre d’Études et de Recherches de l’Industrie du Béton 65

  • Poon CS, Lam L, Kou SC, Wong YL, Wong R (2001) Rate of pozzolanic reaction of MK in high-performance cement pastes. Cem Concr Res 31:1301–1306

    Article  CAS  Google Scholar 

  • Ragavaisree, Rajasekaran (2019) Effect of natural admixture on mechanical properties of fly ash mix concrete. Int Res J Eng Technol (IRJET) (12), 1376–1383, 06.

  • Sabir BB, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: A review. Cem Concr Compos 23:441–454

    Article  CAS  Google Scholar 

  • Said-Mansour M, Kadri E-H, Kenai S, Ghrici M, Bennaceur R (2001) Influence of calcined kaolin on mortar properties. Construction and Buildind Materials 25:2275–2282

    Article  Google Scholar 

  • Sepulcre-Aguilar A, Hernández-Olivares F (2010) Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement, and sepiolite, for grouting of historic masonry. Cem Concr Res 40(1):66–76. https://doi.org/10.1016/j.cemconres.2009.08.028

    Article  CAS  Google Scholar 

  • Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: A review. Appl Clay Sci 43:392–400

    Article  CAS  Google Scholar 

  • Surendran SM, Ravi R, Siva Subramani G, Chattopadhyay, (2017) S, Characterization of ancient mortars of Veppathur temple. Int J Civil Eng Technol 8(4):2132–2139

    Google Scholar 

  • Vagenas NV, Gatsouli A, Kontoyannis CG (2003) Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 59(4):831–836. https://doi.org/10.1016/S0039-9140(02)00638-0

    Article  CAS  Google Scholar 

  • Veiga MR, Velosa A, Magalhães AC (2009) Experimental Applications of mortars with pozzolanic additions. Characterization and performance evaluation. Construct Build Mater 1(23):318–327

    Article  Google Scholar 

  • Veiga R, Fragata A, Velosa A, Magalhães A, Margalha G (2010) Lime-based mortars: viability for use as substitution renders in historic buildings. Int J  Archit Herit 4:177–195

    Article  Google Scholar 

  • Velosa AL, Rocha F, Veiga R (2009) Influence of chemical and mineralogical composition of metakaolin on mortar characteristics. Acta Geodynamica Et Geomaterialia 153(6):121–126. https://doi.org/10.1016/j.jnucmat.2008.10.004

    Article  CAS  Google Scholar 

  • Venumadhava Rao K, Venkatarama Reddy BV, Jagadish KS (1996) Flexural bond strength of masonry using various blocks and mortars. Mater Struct 29:119–124

    Article  Google Scholar 

  • Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68:771–779

    Article  CAS  Google Scholar 

  • Wei G, Zhang H, Wang H, Fang S (2012) An experimental study on application of sticky rice–lime mortar in conservation of the stone tower in the Xiangji Temple. Constr Build Mater 28:624–632

    Article  Google Scholar 

  • Yang F, Zhang B, Ma Q (2010) Study of sticky rice−lime mortar technology for the restoration of historical masonry construction. Accounts Chem Res 43(6):936–944. https://doi.org/10.1021/ar9001944

    Article  CAS  Google Scholar 

  • Yuen CG, Lissel SL (2007) Flexural bond strength of clay brick masonry. Computational Methods and Experiments in Materials Characterization III:57. https://doi.org/10.2495/MC070251

    Article  Google Scholar 

  • Zhao P, Jackson MD, Zhang Y, Li G, MonteiroPJM Y, L., (2015) Material characteristics of ancient Chinese lime binder and experimental reproductions with organic admixtures. Constr Build Mater 84:477–488

    Article  Google Scholar 

  • Zhu W, Chen X, Struble LJ, Yang EH (2018) Characterization of calcium-containing phases in alkali-activated municipal solid waste incineration bottom ash binder through chemical extraction and deconvoluted Fourier transform infrared spectra. J. Cleaner Prod. 192(Aug):782–789. https://doi.org/10.1016/j.jclepro.2018.05.049

    Article  CAS  Google Scholar 

  • Zhu P, Hao Y, Liu H, Wei D, Liu S, Gu L (2019) “Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete.” In Construction and building materials, 442–450. New York: Elsevier

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kotteeswaran Santhanam—conceptualization, methodology, writing, original draft preparation. Ravi Ramadoss—reviewing, results and discussion.

Corresponding author

Correspondence to Ravi Ramadoss.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Philippe Garrigues.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhanam, K., Ramadoss, R. Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration. Environ Sci Pollut Res 29, 79634–79648 (2022). https://doi.org/10.1007/s11356-022-21019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21019-x

Keywords

Navigation