Skip to main content

Advertisement

Log in

The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we analyzed the structure of the stygobiotic copepod assemblages of an unconsolidated European aquifer (VO), in southern Italy, that has been subject to persistent nitrate contamination for over 15 years. To this end, we monitored 25 bores where groundwater was contaminated only by nitrate, and no other chemical pollutants were reported as being above detection limits from 2009 to 2014. We monitored these bores three times, namely in autumn 2014 and in spring and autumn 2015. We expected that the chronic exposure to high nitrate concentrations had a significant and evident impact on the stygobiotic copepod assemblages. Unexpectedly, the assemblages were highly diversified. The stygobiotic species richness (SSR) accounted 17 species, a value that exceeded the European mean value (SSR = 12 species). However, the species density was only 0.6 species/km2, lower than the European mean value (= 1.6 species/km2). Moreover, the juvenile copepods were numerically less abundant than the adults and the biomass-abundance model showed signs of alteration of the structure of the copepod assemblages. This study highlighted that (i) nitrates, even at high concentrations, probably have a less severe impact on groundwater assemblages of unconsolidated aquifers than expected and (ii) the analysis of population traits and biomasses can detect signs of alteration of these assemblages that would, otherwise, not be visible from the analysis of the sole species richness and abundances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ABC:

Abundance-biomass curve

ASS:

Variables connected to the structure of the copepod assemblages

BIOM:

Biomass

BORE:

Bore variables

CHE:

Chemical compound variables

CHPS:

Chemico-physical variables

nSB:

Non-stygobiotic

POP:

Population variables

RES:

Variables indicative of the trophic resources

SB:

Stygobiotic

SSR:

Stygobiotic species richness

VO:

Unconsolidated aquifer of the River Vomano

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723

    Article  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 97:111

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth 214 pp

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multi-model inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Playmouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Playmouth, Playmouth Marine Laboratory

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Desiderio G, Nanni T, Rusi S (2003) La pianura del fiume Vomano (Abruzzo): Idrogeologia, antropizzazione e suoi effetti sul depauperamento della falda. Boll Soc Geol Ital 122:421–434

    Google Scholar 

  • Di Lorenzo T, Galassi DMP (2013) Agricultural impacts on Mediterranean alluvial aquifers: do groundwater communities respond? Fundam Appl Limnol 182(4):271–281

    Article  Google Scholar 

  • Di Lorenzo T, Brilli M, Del Tosto D et al (2012) Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environ Earth Sci 67(8):2383–2398

    Article  CAS  Google Scholar 

  • Di Lorenzo T, Murolo A, Fiasca B et al (2019a) Potential of a trait-based approach in the characterization of an N-contaminated alluvial aquifer. Water 11:2553

    Article  CAS  Google Scholar 

  • Di Lorenzo T, Di Cicco M, Di Censo D et al (2019b) Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environ Pollut 255:113–189

    Article  CAS  Google Scholar 

  • Di Marzio WD, Castaldo D, Di Lorenzo T, Di Cioccio A, Sáenz ME, Galassi DMP (2014) Developmental endpoints of chronic exposure to suspected endocrine-disrupting chemicals on benthic and hyporheic freshwater copepods. Ecotox Environ Safe 96:86–92

    Article  CAS  Google Scholar 

  • Di Marzio WD, Cifoni M, Sáenz ME et al (2018) The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: implications for environmental risk assessment in groundwater bodies. Ecotox Environ Safe 149:72–79

    Article  CAS  Google Scholar 

  • Dormann CF, Bobrowski M, Dehling DM, Harris DJ, Hartig F, Lischke H, Moretti MD, Pagel J, Pinkert S, Schleuning M, Schmidt SI, Sheppard CS, Steinbauer MJ, Zeuss D, Kraan C (2018) Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob Ecol Biogeogr 27(9):1004–1016

    Article  Google Scholar 

  • Ducci D, Della Morte R, Mottola A, Onorati G, Pugliano G (2019) Nitrate trends in groundwater of the Campania region (southern Italy). Environ Sci Pollut Res 26:2120–2131

    Article  CAS  Google Scholar 

  • Dussart B, Defaye D (2006) World directory of Crustacea Copepoda of inland waters, II – Cyclopiformes. Backhuys Publishers BV, Leiden, pp 354

    Google Scholar 

  • EC (European Commission) (1991) Nitrate Directive. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. OJ L 375, 31.12.1991, pp. 1-8

  • EEA (European Environmental Agency) (2018) European waters. Assessment of status and pressures. EEA Report No 7/2018 Luxembourg: Publications Office of the European Union, pp.1-90

  • Erostate M, Huneau F, Garel E, Lehmann MF, Kuhn T, Aquilina L, Vergnaud-Ayraud V, Labasque T, Santoni S, Robert S, Provitolo D, Pasqualini V (2018) Delayed nitrate dispersion within a coastal aquifer provides constraints on land-use evolution and nitrate contamination in the past. Sci Total Environ 644:928–940

    Article  CAS  Google Scholar 

  • Fakher el Abiari A, Oulbaz Z, Yacoubi-Khebiza M et al (1998) Etude expérimentale de la sensibilité comparée de trois crustacés stygobies vis-à-vis de diverses substances toxiques pouvant se rencontrer dans les eaux souterraines. Mem Biospeol 25:167–181 (in French)

    Google Scholar 

  • Fattorini S, Lombardo P, Fiasca B, di Cioccio A, di Lorenzo T, Galassi DMP (2017) Earthquake-related changes in species spatial niche overlaps in spring communities. Sci Rep 7(1):443

    Article  CAS  Google Scholar 

  • Fattorini S, Di Lorenzo T, Galassi DMP (2018) Earthquake impacts on microcrustacean communities inhabiting groundwater-fed springs alter species-abundance distribution patterns. Sci Rep 8:1501

    Article  CAS  Google Scholar 

  • Feller RJ, Warwick RM (1988) Energetics. In: Higgings RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 181–196

    Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  CAS  Google Scholar 

  • Francois CM, Mermillod-Blondin F, Malard F, Fourel F, Lécuyer C, Douady CJ, Simon L (2016) Trophic ecology of groundwater species reveals specialization in a low-productivity environment. Funct Ecol 30(2):262–273

    Article  Google Scholar 

  • Galassi DMP (2001) Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453-454:227–253

    Article  Google Scholar 

  • Galassi DMP, Lombardo P, Fiasca B et al (2014) Earthquakes trigger the loss of groundwater biodiversity. Sci Rep 4:6273

    Article  CAS  Google Scholar 

  • Gibert J, Culver DC, Dole-Olivier M-J et al (2009) Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshw Biol 54(4):930–941

    Article  Google Scholar 

  • Hartland A, Fenwick GD, Bury SJ (2019) Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Mar Freshw Res 62(2):119–129

    Article  Google Scholar 

  • Hose GC, Fryirs KA, Bailey J, Ashby N, White T, Stumpp C (2017) Different depths, different fauna: habitat influences on the distribution of groundwater invertebrates. Hydrobiologia 797(1):145–157

    Article  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Huston MA (1979) A general hypothesis of species diversity. The Amer Nat 113:81–101

    Article  Google Scholar 

  • Korbel KL, Hancock PJ, Serov P, Lim RP, Hose GC (2013) Groundwater ecosystems vary with land use across a mixed agricultural landscape. J Environ Qual 42(2):380–390

    Article  CAS  Google Scholar 

  • Korbel KL, Stephenson S, Hose GC (2019) Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat Sci 81:39

    Article  CAS  Google Scholar 

  • Lasagna M, De Luca DA (2019) Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. Environ Sci Pollut Res 26:2089–2104

    Article  CAS  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. University Press, Oxford 368 pp

    Google Scholar 

  • Malard F, Plenet S, Gibert J (1996) The use of invertebrates in ground water monitoring: a rising research field. Groundwater Monit R 16:103–113

    Article  CAS  Google Scholar 

  • Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776

    Article  Google Scholar 

  • Marmonier P, Maazouzi C, Baran M et al (2018) Ecology-based evaluation of groundwater ecosystems under intensive agriculture: a combination of community analysis and sentinel exposure. Sci Total Environ 613-614:1353–1366

    Article  CAS  Google Scholar 

  • Mösslacher F, Notenboom J (2000) Groudwater biomonitoring. In: Gerhardt A (ed) Biomonitoring of polluted water: reviews on actual topics. [Uetikon-Zuerich]. Trans Tech Publications, Uetikon-Zuerich, pp 119–139

    Google Scholar 

  • Pipan T (2005) Epikarst – a promising habitat. Copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). ZRC Publishing, Karst Research Institute at ZRC SAZU, 102 pp

  • R Core Team (2008) R: a language and environment for statistical computing; R Foundation for Statistical Computing:Vienna, Austria. http://www.R-project.org/. Accessed 25 February 2020

  • Regione Abruzzo (2010) Piano di Tutela delle Acque. Relazione Generale e Allegati. http://www.regione.abruzzo.it/pianoTutelaacque/index.asp?modello=elaboratiPiano&servizio=lista&stileDiv=elaboratiPiano. Accessed 8 March 2020

  • Stoch F, Galassi DMP (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234

    Article  CAS  Google Scholar 

  • Voituron Y, de Frapoint M, Issartel J et al (2010) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms. Biol Lett 7:105–107

    Article  Google Scholar 

  • Warwick RM, Gee JM (1984) Community structure of estuarine meiobenthos. Mar Ecol Prog Ser 18:97–111

    Article  Google Scholar 

  • Weitowitz DC, Robertson AL, Bloomfield JP, Maurice L, Reiss J (2019) Obligate groundwater crustaceans mediate biofilm interactions in a subsurface food web. Freshw Sci 38(3):491–502

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C, Galassi D, Marmonier P, Stoch F, Cornu JF, Malard F (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145

    Article  Google Scholar 

Download references

Acknowledgments

We thank Agostina Tabilio Di Camillo and Alessandro Murolo for the support in the sampling and sorting activities. We are grateful to an anonymous reviewer who provided suggestions that have improved our manuscript.

Funding

This research was funded by the European Commission - LIFE12 BIO/IT/000231 AQUALIFE “Development of an innovative and user-friendly indicator system for biodiversity in groundwater dependent ecosystems.”

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.D.L. and D.M.P.G.; methodology, T.D.L., B.F., and D.M.P.G.; validation, T.D.L., B.F., and D.M.P.G.; formal analysis, T.D.L. and M.D.C.; investigation, B.F. and M.D.C.; resources, D.M.P.G.; data curation, B.F. and M.D.C.; writing—original draft preparation, T.D.L.; writing—review and editing, T.D.L.; project administration, B.F.; funding acquisition, D.M.P.G.

Corresponding author

Correspondence to Tiziana Di Lorenzo.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lorenzo, T., Fiasca, B., Di Cicco, M. et al. The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected. Environ Sci Pollut Res 28, 11518–11527 (2021). https://doi.org/10.1007/s11356-020-11408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11408-5

Keywords

Navigation