Skip to main content

Advertisement

Log in

Evaluation of the trophic status in three reservoirs in Algeria (north west) using physicochemical analysis and rotifers structure

  • Selected Case Studies on the Environment of the Mediterranean and Surrounding Regions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the trophic state of three reservoirs located in the northwest of Algeria based on the physicochemistry of water and the community of rotifers. The measurements of the physicochemical variables were carried out monthly over a 2-year period from December 2015 to November 2017. The rotifers were sampled simultaneously. Abiotic and biotic indices such as the Carlson index, QB/T, and TSIROT were determined in order to classify the three reservoirs according to their trophic state. Thus, the diversity indices of Shannon-Wiener (H′), Margalef richness index (D), Pielou evenness (J′), and the density were calculated in order to study the structure of the rotifers. The Kruskal-Wallis test confirmed the heterogeneity of the physicochemical quality (P value < 0.05) among the three reservoirs. A total of 71 species were identified during this study. The result of the various indices affirms this heterogeneity and indicates a trophic state hypereutrophic for the Hammam Boughrara reservoir, eutrophic for the Bakhadda reservoir and meso-oligotrophic for Sidi Yacoub. The use of canonical correspondence analysis (CCA) has shown that the structure of rotifers is influenced by local environmental factors. Some species such as the genus Brachionus species have shown their preference for extreme conditions. The use of biotic indices is highly recommended for the trophic state evaluation of reservoirs for a better water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alayat H, El Khattabi J, Lamouroux C (2013) Spatial evolution of the physico-chemical characteristics of the waters of Lake Oubeaira imposed by the severe conditions of drought (extreme NE Algeria). Eur Sci J ESJ 9(36):564–579

  • Al-Taani AA, El-Radaideh NM, Al Khateeb WM, Al Bsoul A (2018) Reservoir water quality: a case from Jordan. Environ Monit Assess 190:604–619. https://doi.org/10.1007/s10661-018-6976-9

    Article  CAS  Google Scholar 

  • Amar Y, Djahed B, Lebid S, Anani M, Moueddene K, Mathieu C (2012) Hammam Boughrara zooplanctonique population biodiversity under intense industrial pollution. J Environ Sci Eng 1:1–6

    Google Scholar 

  • Andronikova IN (1993) Lake classification with respect to biological productivity. In: Teoreticheskie voprosy klassifikatsii ozer [theoretical problems of Lake classification]. Nauka, St. Petersburg, pp 51–72

    Google Scholar 

  • Angeli N (1976) Influence of pollution on the elements of plankton. In: Pesson P (ed) La Pollution Oles Eaux Continentales. Ed, GauthierVillars, pp 97–133 (In French)

    Google Scholar 

  • Arab S, Arab A (2017) Effect of the physico-chemical parameters on the distribution of the fecal flora in a dam reservoir (Algeria). Revue d'Écologie (Terre et Vie) 72(3):269–280

    Google Scholar 

  • Arora J, Mehra NK (2003) Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna (Delhi), India. Hydrobiologia 491:101–109. https://doi.org/10.1023/A:1024490805310

    Article  CAS  Google Scholar 

  • Baião C, Boavida MJ (2005) Rotifers of Portuguese reservoirs in river Tejo catchment: relations with trophic state. Limnética 24:103–113

    Google Scholar 

  • Balvay G (1989) Evolution of the rotatorian biocenosis during the variations of the trophic state of Lake Geneva and comparison with Lake Constance. Rseau 2:739–753 (In French). https://doi.org/10.7202/705052ar

    Article  Google Scholar 

  • Barakat A, El Baghdadi M, Rais J, Aghezzaf B, Slassi M (2016) Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int Soil Water Conserv Res 4:284–292. https://doi.org/10.1016/j.iswcr.2016.11.002

    Article  Google Scholar 

  • Barrabin JM (2000) The rotifers of Spanish reservoirs: ecological, systematical and zoogeographical remarks. Limnetica 19:91–167

    Google Scholar 

  • Benzha F, Taoufik M, Dafir JE, Kemmou S, Loukili L (2005) Physico-chemical quality of the water from the Daourat reservoir; impact of the emptying on its functioning. Revue des sciences de l'eau/J Water Sci 18:57–74. https://doi.org/10.7202/705576ar (In French)

    Article  Google Scholar 

  • Bērziņš B, Pejler B (1989) Rotifer occurrence and trophic degree. Hydrobiologia 182:171–180. https://doi.org/10.1007/BF00006043

    Article  Google Scholar 

  • Bidi-Akli S, Arab A, Samraoui B (2014) Spatio-temporal variation of zooplankton in the dam of the Zéralda hunting reserve (Algeria). Revue d'Écologie (Terre et Vie) 69:214–224 (In French)

    Google Scholar 

  • Bouzid-Lagha S, Djelita B (2012) Study of the eutrophication phenomenon in the Hammam Boughrara Dam (Wilaya of Tlemcen, Algeria). Hydrol Sci J 57:186–201 (In French). https://doi.org/10.1080/02626667.2011.634417

    Article  CAS  Google Scholar 

  • Branco CWC, Rocha M-IA, Pinto GFS, Gomara GA, Filippo RD (2002) Limnological features of Funil reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes Reserv Res Manag 7:87–92. https://doi.org/10.1046/j.1440-169X.2002.00177.x

    Article  CAS  Google Scholar 

  • Brient L, Legeas M, Leitao M, Peigner P (2004) Great west interregional study on cyanobacteria in freshwater. DASS / DRASS report for the Basse-Normandie, Bretagne and Pays de Loire regions, pp 80 (In French)

  • Carlson RE (1977) A trophic state index for lakes: trophic state index. Limnol Oceanogr 22:361–369. https://doi.org/10.4319/lo.1977.22.2.0361

    Article  CAS  Google Scholar 

  • Castro BB, Antunes SC, Pereira R, Soares AMVM, Gonçalves F (2005) Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543:221–232. https://doi.org/10.1007/s10750-004-7453-8

    Article  Google Scholar 

  • Chen L, Liu Q, Peng Z, Hu Z, Xue J, Wang W (2012) Rotifer community structure and assessment of water quality in Yangcheng Lake. Chin J Oceanol Limnol 30(1):47–58. https://doi.org/10.1007/s00343-012-0150-y

    Article  Google Scholar 

  • Dembowska EA, Napiórkowski P, Mieszczankin T, Józefowicz (2015) Planktonic indices in the evaluation of the ecological status and thetrophic state of the longest lake in Poland. Ecol Indic 56:15–22. https://doi.org/10.1016/j.ecolind.2015.03.019

    Article  Google Scholar 

  • Devi Prasad AG, Siddaraju P (2012) Carlson’s Trophic State Index for the assessment of trophic status of two lakes in Mandya district. Adv Appl Sci Res 5:2992–2996

    Google Scholar 

  • Djelita B, Bouzid-Lagha S, Nehar KC (2016) Spatial and temporal patterns of the water quality in the Hammam Boughrara reservoir in Algeria. In: Grammelis P. (eds) Energy, transportation and global warming. Green energy and technology. Springer, Cham, pp. 635–653 https://doi.org/10.1007/978-3-319-30127-3_46

  • Djelita B, Nehar KC, Bouzid-Lagha S (2015) Mechanisms of eutrophication of Hammam Boughrara dam, Algeria: nutrient inputs and dynamics of phytoplankton populations. Geo Eco Trop 39(1):101–118

    Google Scholar 

  • Doukhandji N, Arab A (2017) The spatio-temporal distribution of rotifers in a dam in a saharan climate region (Foum El Gherza, Algeria). Revue d'Écologie (Terre et Vie) 72(2):168–176

    Google Scholar 

  • Duggan IC, Green JD, Shiel RJ (2001a) Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446(447):155–164

    Article  Google Scholar 

  • Duggan IC, Green JD, Thomasson K (2001b) Do rotifers have potential as bioindicators of lake trophic state? Verh Internat Verein Limnol 27:3497–3502. https://doi.org/10.1080/03680770.1998.11902479

    Article  Google Scholar 

  • Ejsmont-Karabin J (2012) The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Pol J Ecol 60(2):339–350

    Google Scholar 

  • El Ghachtoul Y, Alaoui Mhamidi M, Gabi H (2005) Eutrophication of the waters of the reservoirs of the Smir and Sehla dams (Morocco): causes, consequences and management instructions. J Water Sci 18:75–89

    Google Scholar 

  • El Haouati H (2015) Adaptation of a phytoplankton index for the assessment of the water quality of Algerian lake ecosystems. Dissertation, University of Science and Technology Houari Boumediene, Algeria (In French)

  • García-Chicote J, Armengol X, Rojo C (2018) Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69:46–54. https://doi.org/10.1016/j.limno.2017.11.004

    Article  CAS  Google Scholar 

  • García-Chicote J, Armengol X, Rojo C (2019) Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 9:113–123. https://doi.org/10.1080/20442041.2018.1519352

    Article  CAS  Google Scholar 

  • Gazonato Neto AJ, Silva LC, Saggio AA, Rocha O (2014) Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotrop 14(4):1–12. https://doi.org/10.1590/1676-06032014001814

    Article  Google Scholar 

  • Green J (1987) Keratella cochlearis (Gosse) in Africa. Hydrobiologia 147:3–8. https://doi.org/10.1007/BF00025719

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. https://doi.org/10.1126/science.1182570

    Article  CAS  Google Scholar 

  • Haberman J, Haldna M (2014) Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J Limnol 73(2):263–273. https://doi.org/10.4081/jlimnol.2014.828

    Article  Google Scholar 

  • Hamil S, Arab S, Chaffai A, Baha M, Arab A (2018) Assessment of surface water quality using multivariate statistical analysis techniques: a case study from Ghrib dam, Algeria. Arab J Geosci 11:754. https://doi.org/10.1007/s12517-018-4102-5

    Article  Google Scholar 

  • Inaotombi S, Gupta PK, Mahanta PC (2016) Influence of abiotic factors on the spatio-temporal distribution of rotifers in a subtropical lake of Western Himalaya. Water Air Soil Pollut 227:50. https://doi.org/10.1007/s11270-015-2729-3

    Article  CAS  Google Scholar 

  • Koste W (1978) Rotatoria. Die Rädertiere Mitteleuropas, begründet von Max Voigt. Monogononta. Gebrüder Borntraeger, Berlin, Stuttgart:673 pp

  • Maemets A (1983) Rotifers as indicators of lake types in Estonia. Hydrobiologia 104:357–361

    Article  Google Scholar 

  • Margalef R (1958) Information theory in ecology. General Systems 3:36–71

    Google Scholar 

  • May L, O’Hare M (2005) Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546(1):397–404. https://doi.org/10.1007/s10750-005-4282-3

    Article  Google Scholar 

  • Millerioux G (1974-1975) Comparison of spectrophotometric methods for the calculation of phytoplankton pigments. Annls Slat Biol 9:59–77 (In French)

  • Mohan M, Omana PK (2007) Statistical analysis of water quality data from Ramsar site-Vembanadu backwaters, South west coast of India. Asian J Microbiol Biotech Environ Sci 9:313–320

    CAS  Google Scholar 

  • Moreno-Gutiérrez RM, Sarma SSS, Sobrino-Figueroa AS, Nandini S (2018) Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (state of Mexico, Mexico): the importance of seasonal sampling. J Limnol 77(3):441–451. https://doi.org/10.4081/jlimnol.2018.1823

    Article  Google Scholar 

  • Moreno-Ostos E, Palomino-Torres RL, Escot C, Blanco JM (2016) Planktonic metabolism in a Mediterranean reservoir during a near-surface cyanobacterial bloom. Limnetica 35(1):117–130. https://doi.org/10.23818/LIMN.35.10

    Article  Google Scholar 

  • Mulhauser B, Monnier G (1995) Guide to the fauna and flora of European lakes and ponds. Delachaux and Niestlé. Collection Les Guides du Naturaliste, Switzerland (In French)

    Google Scholar 

  • N.A.W.R National Agency for Water Resources Alger (2019) Annu Hydrol de l’Algérie (Alger, Hydrological Yearbook of Algeria). Water Resources Ministry

  • Nasri H, El Herry S, Bouaïcha N (2008) First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol Environ Saf 71:535–544. https://doi.org/10.1016/j.ecoenv.2007.12.009

    Article  CAS  Google Scholar 

  • Nogrady T, Wallace RL, Snell TW (1993) Rotifera 1. Biology, ecology and systematics. In: Dumont HJ (ed) Guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic. The Hague, pp. 142

  • Nogueira MG (2001) Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 455:1–18

    Article  Google Scholar 

  • Ouhmidou M, Chahlaoui A (2013) Study of the physico-chemical and bacteriological quality of the barrage Hassan Addakhil of Errachidia (Morocco). J Mater Environ Sci 6(6):1663–1671 (In French)

    Google Scholar 

  • Ouhmidou M, Chahlaoui A, Kharroubi A, Chahboune M (2015) Study of the physico-chemical and bacteriological quality of the barrage Hassan Addakhil of Errachidia (Morocco). J Mater Environ Sci 6(6):1663–1671

    CAS  Google Scholar 

  • Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, Hoffman DK, Wilhelm SW, Wurtsbaugh WA (2016) It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol 50:10805–10813. https://doi.org/10.1021/acs.est.6b02575

    Article  CAS  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological colledions. J Theoret Biol 13:131–144

    Article  Google Scholar 

  • Pourriot R (1980) Rotifers. In: Jean-René D (ed) Lévêque Christian (ed) aquatic flora and fauna of Sahelo-Sudanese Africa, 1st edn. ORSTOM, Paris, pp 219–244 (In French)

    Google Scholar 

  • Qian FP, Xi YL, Wen XL (2007) Eutrophication impact on community structure and species diversity of rotifers in five lakes of Anhui. Biodivers Sci 15:344–355

    Article  CAS  Google Scholar 

  • R Development Core Team (2018) R: a language and environment for statistical computing. Version 4.0.1. R Foundation for Statistical Computing, Vienna. Available at https://www.R-project.org/

  • Rodier J (1996) Water analysis: natural waters, waste waters, sea water. Chemistry, Physico-chemistry, Bacteriology. 8th edition Dunod, Paris pp 1383 (In French)

  • Rodier J, Legube B, Merlet N (2009) Water analysis, 9th edn. Dunod, Paris (In French)

    Google Scholar 

  • Rosińska J, Romanowicz-Brzozowska W, Kozak A, Gołdy R (2019) Zooplankton changes during bottom-up and top-down control due to sustainable restoration in a shallow urban lake. Environ Sci Pollut Res 26:19575–19587. https://doi.org/10.1007/s11356-019-05107-z

    Article  CAS  Google Scholar 

  • Sanap RR, Mohite AK, Pingle SD, Gunale VR (2006) Evaluation of water qualities of Godavari River with reference to physicochemical parameters dist. Nasik (M.S.), India. Poll. Res 25(4):775–778

    CAS  Google Scholar 

  • Scor-Unesco (1964) Report of Scor-Unesco working group 17 on determination of photosynthetic pigments. UNESCO, Paris

    Google Scholar 

  • Seda J, Devetter M (2000) Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir. J Plankton Res 22:1829–1840. https://doi.org/10.1093/plankt/22.10.1829

    Article  Google Scholar 

  • Segers H, De Smet WH (2008) Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodivers Conserv 17:303–316. https://doi.org/10.1007/s10531-007-9262-7

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) La théorie mathématique de la communication. University of Illinois Press, Urbana-Champaign, pp 1–117

    Google Scholar 

  • Sládeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100:169–201

    Article  Google Scholar 

  • Stamou G, Katsiapi M, Moustaka-Gouni M, Michaloudi E (2019) Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844:83–103. https://doi.org/10.1007/s10750-018-3880-9

    Article  CAS  Google Scholar 

  • Tasevska O, Jersabek CD, Kostoski G, Gušeska D (2012) Differences in rotifer communities in two freshwater bodies of different trophic degree (Lake Ohrid and Lake Dojran, Macedonia). Biologia 67(3):565–572. https://doi.org/10.2478/s11756-012-0041-x

    Article  Google Scholar 

  • Tasevska O, Špoljar M, Gušeska D, Kostoski G (2017) Summer rotifer assemblages in three reservoirs in the Republic of Macedonia. Acta Zool Bulg Suppl 8:77–84

    Google Scholar 

  • Thakur RK, Jindal R, Singh UB, Ahluwalia AS (2013) Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environ Monit Assess 185:8355–8373. https://doi.org/10.1007/s10661-013-3178-3

    Article  CAS  Google Scholar 

  • Weiher E, Keddy P (1999) Ecological assembly rules: perspectives, advances, Retreats Cambridge University Press https://doi.org/10.1017/CBO9780511542237

  • Wen X-L, Xi Y-L, Qian F-P, Zhang G, Xiang X-L (2011) Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia 661:303–316. https://doi.org/10.1007/s10750-010-0539-6

    Article  CAS  Google Scholar 

  • Xiong JL, Mei XG, Hu CL (2003) Relationship between the trophication classification and the community structure of rotifers in four lakes. Chin J Zool 38(6):8–13 (in Chinese)

    Google Scholar 

  • Yin L, Ji Y, Zhang Y, Chong L, Chen L (2018) Rotifer community structure and its response to environmental factors in the Backshore Wetland of Expo Garden. Shanghai Aquacul Fish 3(2):90–97

    Google Scholar 

  • Yoshida T, Urabe J, Elser JJ (2003) Assessment of "top-down" and "bottom-up" forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol Res 18:639–650

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Mrs. Imane SAAL for his help and contribution to the realization of this project.

Author information

Authors and Affiliations

Authors

Contributions

GS: conceptualization, investigation, visualization, software, and writing—review and editing.

DB: formal analysis and software.

AT: formal analysis.

AA: supervision, review, and editing.

Corresponding author

Correspondence to Ghiles Smaoune.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Thomas Hein

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaoune, G., Bouchelouche, D., Taleb, A. et al. Evaluation of the trophic status in three reservoirs in Algeria (north west) using physicochemical analysis and rotifers structure. Environ Sci Pollut Res 28, 46627–46642 (2021). https://doi.org/10.1007/s11356-020-11233-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11233-w

Keywords

Navigation