Skip to main content

Advertisement

Log in

Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study deals with the limnobiotic status of three selected lakes of Himachal Pradesh using physicochemical and biological parameters (especially phytoplankton and zooplankton) over a period of 2 years. One hundred forty-eight species belonging to nine groups of phytoplankton and 79 species belonging to five groups of zooplankton were identified from the lakes. Trophic level and the pollution status of the lakes were assessed upon the basis of Shannon diversity index (H′), species richness index (S), and physicochemical parameters. Plankton population size was correlated with biotic and abiotic parameters (pH, alkalinity, temperature, dissolved oxygen, transparency, phosphate, chloride, and nitrate). The present investigation revealed that the distribution of plankton species depended upon the physicochemical parameters of the environment. Based on water quality standards given by the Central Pollution Control Board, the water quality was between “A–B” at Prashar wetland, “C–D” at Kuntbhyog Lake, and “D–E” at Rewalsar Lake. The results from the present study indicated that the potential of planktons as bioindicators of trophic status is very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abubacker, M. N., Kannan, V., Sridharan, V. T., Chandramohan, M., & Rajavelu, S. (1996). Physico chemical and biological studies on Uyyakondan Canal water of river Cauvery. Pollution Research, 15(3), 257–259.

    CAS  Google Scholar 

  • Anderson, R. A. (2005). Algal culturing techniques. Boston, MA: Academic.

    Google Scholar 

  • APHA, AWWA, & WEF (2005). Standard methods for the examination of water and waste water (21st ed.). New York, Washington, DC: Jointly prepared and published by the American Public Health Association, American Water Works Association, and Water Environment Federation.

  • Atici, T., & Ahiska, S. (2005). Pollution and algae of Ankara stream. Gazi University Journal of Science, 18(1), 51–59.

    Google Scholar 

  • Atici, T., & Alas, A. (2012). A study on the trophic status and phytoplanktonic algae of Mamasin Dam Lake (Aksaray-Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 12, 595–601.

    Article  Google Scholar 

  • Atici, T., & Obali, O. (2010). The diatoms of Asartepe Dam Lake (Ankara), with environmental and some physicochemical properties. Turkish Journal of Botany, 34, 541–548.

    Google Scholar 

  • Bhatt, J. P., Jain, A., Bhaskar, A., & Pandit, M. K. (2001). Pre­impoundment study of biotic communities of Kistobazar Nala in Purulia (West Bengal). Current Science, 81, 10.

    Google Scholar 

  • Biswas, K. (1949). Common fresh and brackish algal flora of India and Burma. Records Botanical Survey of India, 15(2), 1–169.

    Google Scholar 

  • Carrias, J. F., Amblard, C., Carrias, J. F., Amblard, C., & Bourdier, G. (1998). Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic lake Pavin. Archiv fu¨ r Hydrobiologie, 143, 227–255.

    Google Scholar 

  • Das, A. K. (2000). Limno-chemistry of some Andhra Pradesh reservoirs. Journal of the Inland Fisheries Society of India, 32(2), 37–44.

    Google Scholar 

  • Das, S. M., & Srivatsava, V. K. (1959). Studies on freshwater plankton III. Qualitative composition and seasonal fluctuations in plankton components. Proceedings of National Academy of Science, India, 29B, 174–189.

    Google Scholar 

  • Das, P. K., Michael, R. G., & Gupta, A. (1996). Zooplankton community in Lake Tasek, a tectonic lake in Garo Hills, India. Tropical Ecology, 37(2), 257–263.

    Google Scholar 

  • Das, S. K., Biswas, D., & Roy, S. (2009). Study of hydrophytes in some lentic water bodies in West Bengal, India. Ecoprint, 16, 9–13.

    Google Scholar 

  • Desikachary, T. V. (1959). Cyanophyta, New Delhi: I.C.A.R. Monograph on Algae.

  • Dwvedi, P., & Odi, P. (2003). Evolution of potable water quality in streams and the Dickrong River in the district Papum Pore, Arunachal Pradesh, India. Ecology Environment and Conservation, 9(4), 437–440.

    Google Scholar 

  • Ferdous, Z., & Muktadir, A. K. M. (2009). A review: potentiality of zooplankton as bioindicator. American Journal of Applied Sciences, 6, 1815–1819.

    Article  Google Scholar 

  • Foissner, W., & Berger, H. (1996). A user-friendly guide to ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology, 35, 375–498.

    Google Scholar 

  • Gannon, J. E., & Stemberger, R. S. (1978). Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society, 97, 16–35.

    Article  Google Scholar 

  • Gaur, R. K. (1997). Effects of Microcystis aeruginosa bloom on the density and diversity of cyanophycean population in a tropical pond. Proceedings of the 84th Indian Science Congress Part III, University of Delhi, New Delhi.

  • Ghavzan, N. J., Gunale, V. R., & Trivedy, R. K. (2006). Limnological evaluation of an urban fresh water river with special reference to phytoplankton. Pollution Research, 25(2), 259–268.

    CAS  Google Scholar 

  • Green, J. (1993). Diversity and dominance in planktonic rotifers. Hydrobiologia, 255(256), 345–352.

    Article  Google Scholar 

  • Hanson, M. A., & Butler, M. G. (1994). Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia, 280, 457–466.

    Article  Google Scholar 

  • Hasalam, S. M. (1991). River pollution—an ecological perspective. London: Belhaven.

    Google Scholar 

  • Hellawell, J. M. (1978). Biological surveillance of rivers. Stevanage: Water Research Centre.

    Google Scholar 

  • Hujare, M. S. (2005). Hydrobiologial studies on some water reservoirs of Hatkanangale Tahsil (Maharashtra). Thesis, Shivaji University, Kolhapur.

  • Hulyal, S. B., & Kaliwal, B. B. (2009). Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State. Environment Monitoring and Assessment, 153, 45–59.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1967). A treatise on limnology. Introduction to lake biology and the limnoplankton, vol. II. New York: Wiley.

    Google Scholar 

  • Hynes, H. B. N. (1963). The biology of the polluted waters. Liverpool, UK: Liverpool University Press.

    Google Scholar 

  • Jha, P., & Barat, S. (2003). Hydrobiological study of Lake Mirik in Darjeeling, Himalayas. Journal of Environmental Biology, 24, 339–344.

    CAS  Google Scholar 

  • Jindal, R., & Sharma, C. (2011). Studies on water quality of Sutlej River around Ludhiana with reference to physicochemical parameters. Environment Monitoring and Assessment, 174, 417–425.

    Article  CAS  Google Scholar 

  • Jindal, R., & Vatsal, P. (2005). Plankton as biomonitors of saprobity. Aquaculture, 6(1), 1–16.

    Google Scholar 

  • Kajak, Z. (1983). Ecological characteristics of lakes in north-eastern Poland versus their trophic gradient. Polish Journal of Ecology, 31, 495–530.

    Google Scholar 

  • Kaushik, S., & Sharma, N. (1994). Physico-chemical characteristics and zooplankton population of a perennial tank, Matsya Sarowar, Gwalior. Environment and Ecology, 12(2), 429–434.

    Google Scholar 

  • Kudo, R. R. (1986). Protozoology. 1st Indian Edition. New Delhi, India: Books and Periodicals Corporation.

    Google Scholar 

  • Lampert, W., & Sommer, U. (2001). Ekologia wód sródladowych [Ecology of inland waters]. PWN, Warszawa: Wyd. Nauk.

  • Mahajan, C. L. (1981). Zooplankton as indicators for assessment of water pollution. WHO Workshop on Biological Indicators and Indices of Environmental Pollution. Central Board for the Prevention and Control of Water Pollution, OSM University, Hydrabad, pp. 135–148.

  • Mahapatra, S. S., Sahu, M., Patel, R. K., & Panda, B. N. (2012). Prediction of water quality using principal component analysis. Water Quality Exposure and Health, 4(2), 93–104.

    Article  CAS  Google Scholar 

  • Margalef, R. (1958). Information theory in ecology. Gen Syst, 3, 36–71.

    Google Scholar 

  • Mathew, P. M. (1985). Seasonal trends in the fluctuations of plankton and physico-chemical factors in a tropical lake (Govindgarh Lake, M.P.) and their inter-relationships. Journal of the Inland Fisheries Society of India, 17(1&2), 11–24.

    Google Scholar 

  • Meybeck, M., Kuusisto, E., Mäkelä, A., & Mälkki, E. (1996). Water quality. In J. Bartram & R. Ballance (Eds.), Water quality monitoring. London: E and FN Spon.

    Google Scholar 

  • Mohan, M., & Omana, P. K. (2007). Statistical analysis of water quality data from a Ramsar site, Vembanadu backwaters, southeast coast of India. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 9(2), 313–320.

    CAS  Google Scholar 

  • Mohapatra, S. P. (1987). Heavy metal concentrations in industrial effluents changed to the Thana Creek. Indian Journal of Environment Protection, 7(4), 284–286.

    CAS  Google Scholar 

  • Monjerezi, M., & Ngongondo, C. (2012). Quality of groundwater resources in Chikhwawa, Lower Shire Valley, Malawi. Water Quality Exposure and Health, 4(1), 39–53.

    Article  CAS  Google Scholar 

  • Moss, B. (1988). Ecology of fresh waters. Oxford: Blackwell.

    Google Scholar 

  • Pace, M. (1982). Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Canadian Journal of Fisheries and Aquatic Sciences, 39, 1106–1116.

    Article  Google Scholar 

  • Palmer, G. (1969). A composite rating of algae tolerating organic pollution. Journal of Phycology, 5, 78–82.

    Article  Google Scholar 

  • Paramasivam, M., & Sreenivasan, A. (1981). Change in algal flora due to pollution in Cauvery River. Indian Journal of Environmental Health, 23(3), 222–238.

    CAS  Google Scholar 

  • Patil, C. S., & Goudar, B. V. M. (1985). Ecological study of fresh water zooplankton of a subtropical pond (Karnatak State, India). Internationale Revue Der Gesamten Hydrobiologia, 70(2), 259–267.

    Article  Google Scholar 

  • Paturej, E. (2006). Assessment of the trophic state of the coastal Lake Gardno based on community structure and zooplankton-related indices. Electronic Journal of Polish Agricultural Universities, Biology, 9(2), 3–14.

    Google Scholar 

  • Pennak, R. E. (1989). Freshwater invertebrates of United States: Protozoa to Mollusca (3rd ed.). New York: Wiley.

    Google Scholar 

  • Rai, L. C. (1978). Ecological studies of algal communities of the Ganga River at Varanasi. Indian Journal of Ecology, 5(1), 1–6.

    Google Scholar 

  • Rodhe, W., Vollenweider, R. A., & Nauwerck, A. (1958). The primary production and standing crop of phytoplankton. In A. A. Buzzati-Traverso (Ed.), Perspectives in marine biology (pp. 299–322). San Francisco: University of California Press.

    Google Scholar 

  • Rogozin, A. G. (2000). Specific structural features of zooplankton in lakes differing in trophic status: species populations. Ekologija (Moscow), 6, 438–443.

    Google Scholar 

  • Sampaio, E. V., Rocha, O., Matsumura-Tundisi, T., & Tundisi, J. G. (2002). Composition and abundance of zooplankton in the limnetic zone of seven reservoirs of the Paranapanema River, Brazil. Brazilian Journal of Biology, 62, 525–545.

    Article  CAS  Google Scholar 

  • Sampoorani, V., Dhanapakiam, P., Kavitha, R., Eswari, S., & Rajalakshmi, R. (2002). Assessment of biota in the river Cauvery. Pollution Research, 21(3), 333–340.

    Google Scholar 

  • Sanap, R. R., Mohite, A. K., Pingle, S. D., & Gunale, V. R. (2006). Evaluation of water qualities of Godawari River with reference to physicochemical parameters, Dist. Nasik (M.S.). Indian Pollution Research, 25(4), 775–778.

    CAS  Google Scholar 

  • Shannon, C. E., & Wiener, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Sharma, A., Ranga, M. M., & Sharma, P. C. (2010). Water quality status of historical Gundolav Lake at Kishangarh as a primary data for sustainable management. South Asian Journal of Tourism and Heritage, 3(2), 149–158.

    CAS  Google Scholar 

  • Sheela, A. M., Letha, J., & Joseph, S. (2011). Environmental status of a tropical lake system. Environment Monitoring and Assessment, 180, 427–449.

    Article  CAS  Google Scholar 

  • Shurin, J. B., Havel, J. H., Leibold, M. A., & Pinel-Alloul, B. (2000). Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology, 81, 3062–3073.

    Article  Google Scholar 

  • Sigee, D. C. (2004). Freshwater microbiology: diversity and dynamic interactions of microorganisms in the aquatic environment. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Simpson, G. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Singh, U. B., & Ahluwalia, A. S. (2013). Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change, 18, 73–95. doi:10.1007/s11027-012-9393-3.

    Article  Google Scholar 

  • Sladecek, V. (1983). Rotifera as indicators of water quality. Hydrobiologia, 133, 127–141.

    Google Scholar 

  • Smith, G. M. (1950). The freshwater algae of the United States (2nd ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Sylvester, R. O. (1961). Nutrient content of drainage water from forested urban and agriculture areas. Taft Sanitary Engineering Center, Technical Reports, W-61(3), 80–88.

    Google Scholar 

  • Vandysh, O. I. (2004). Zooplankton as an indicator of the state of lake ecosystems polluted with mining wastewater in the Kola Peninsula. Russian Journal of Ecology, 35(2), 110–116.

    Article  CAS  Google Scholar 

  • Verma, P. K., & Munshi, D. (1987). Plankton community structure of Badua reservoir, Bhagalpur (India). Tropical Ecology, 28, 200–207.

    Google Scholar 

  • Verma, R., Singh, U. B., & Singh, G. P. (2012). Seasonal distribution of phytoplankton in Laddia dam in Sikar district of Rajasthan. Vegetos, 25(2), 165–173.

    Google Scholar 

  • Vijaykumar, K., Paul, R., & Kadadevaru, G. (1991). Physicochemical features of Attikolla pond during pre-monsoon period. Journal of Environmental Ecology, 9(2), 393–395.

    Google Scholar 

  • Vyas, L. N., & Kumar, H. D. (1968). Studies on phytoplankton and other algae of Indra Sagar tank, Udaipur, India. Hydrobiologia, 31, 421–434.

    Article  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses. New York: Springer.

    Book  Google Scholar 

  • WHO. (2004). Water, sanitation and hygiene links to health: facts and figures. Geneva, Switzerland: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Neelma R. Kumar, Chairperson, Department of Zoology, Panjab University, Chandigarh, for providing laboratory facilities; University Grants Commission, New Delhi, for SAP-DRS-II grants; and to the Council of Scientific and Industrial Research, New Delhi (U. B. Singh), for providing financial assistance in the form of Junior Research Fellowship and Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Thakur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, R.K., Jindal, R., Singh, U.B. et al. Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environ Monit Assess 185, 8355–8373 (2013). https://doi.org/10.1007/s10661-013-3178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3178-3

Keywords

Navigation