Skip to main content
Log in

Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Penconazole is one of the most widely used fungicides all over the world, and since it spreads to large environments, its toxic effects on non-target organisms are of great concern. The toxic effects of penconazole on crayfish (Astacus leptodactylus), which is a bioindicator in freshwater ecosystems and consumed economically, are not known. Therefore, in this study, the purpose was to contribute to the literature on the potential harmful effects of penconazole on a non-target species, Astacus leptodactylus. For this aim, the acute toxicity (96 h) of penconazole was examined. The 96-h LC50 value of penconazole was detected as 18.7 mg L−1. Four concentrations of penconazole (18.7 mg L−1, 9.35 mg L−1, 4.68 mg L−1, 2.34 mg L−1) were applied to crayfish for 96 h. The results showed that penconazole had destructive effects on esterase mechanisms by inhibiting acetylcholinesterase (AChE) and carboxylesterase (CaE) activities. Significant increases were observed in all antioxidant parameters (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), reduced glutathione (GSH), malondialdehyde (MDA)) in all doses except the lowest concentration (2.34 mg L−1). All adenosine triphosphatase (ATPase) activities (Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, total ATPase) had significant dose-related inhibition in both gill and muscle tissues. In summary, our findings show that acute penconazole administration to crayfish causes significant toxic effects on esterase, antioxidative parameters, and metabolic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:141–147

    Google Scholar 

  • Abhijith BD, Ramesh M, Poopal RK (2016) Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J Basic Appl Zool 77:31–40

    CAS  Google Scholar 

  • Acena J, Perez S, Eichhorn P, Sole M, Barcelo D (2017) Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry. Anal Bioanal Chem 409:5441–5450

    CAS  Google Scholar 

  • Ahmad I, Mohmood I, Coelho JP, Pacheco M, Santos MA, Duarte AC, Pereira E (2012) Role of non-enzymatic antioxidants on the bivalves’ adaptation to environmental mercury: organ-specificities and age effect in Scrobicularia plana inhabiting a contaminated lagoon. Environ Pollut 163:218–225

    CAS  Google Scholar 

  • Aksakal FI, Ciltas A (2018) Developmental toxicity of penconazole in zebrafish (Danio rerio) embryos. Chemosphere 200:8–15

    Google Scholar 

  • Albendín G, Arellano JM, Manuel-Vez MP, Sarasquete C, Arufe MI (2017) Characterization and in vitro sensitivity of holinesterases of gilthead seabream (Sparus aurata) to organophosphate pesticides. Fish Physiol Biochem 43:455–464

    Google Scholar 

  • Anderson RL (1982) Toxicity of fenvalerate and permethrin to several nontarget aquatic invertebrates. Environ Entomol 11:1251–1257

    CAS  Google Scholar 

  • Andrade LL, Pereira AES, Fraceto LF, Martinez CBR (2019) Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach. Sci Total Environ 663:548–559

    Google Scholar 

  • Araújo MC, Assis CRD, Silva LC, Machado DC, Silva KCC, Lima AVA, Carvalho LB Jr, Bezerra RS, Oliveira MBM (2016) Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): from physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions. Aquat Toxicol 177:182–189

    Google Scholar 

  • Arik UO, Onan E, Aydin S (2018) Use of plant protection products in Alaşehir viticulture, problems and solution suggestions. Anadolu J of AARI 28:88–98

    Google Scholar 

  • ASTM E729-96 (2014) Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians

  • Atkinson A, Gatemby AO, Lowe AG (1973) The determination of inorganic ortophosphate in biological systems. Biochim Biophys Acta 320:195–204

    CAS  Google Scholar 

  • Atlı G (2009) Effects of copper, zinc, cadmium, chromium and silver on Na + / K + -ATPase, Ca + 2-ATPase, Mg + 2-ATPase and Ca + 2-ATPase enzyme activity in gill and kidney tissue of Oreochromis niloticus. PHD Thesis, Çukurova University, Adana, Turkey

  • Atlı G, Canlı M (2011) Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 20:1861–1869

    Google Scholar 

  • Balaji G, Nachiyappan M, Venugopal R (2015) Sub-lethal effect of cypermethrin on Ca+, Mg+ and Na+ /K+ -ATPase activity in fresh water teleost, Cyprinus carpio. World J Zool 10:168–174

    Google Scholar 

  • Balasundaram K, Ramalingam K, Selvarajan VR (1995) Phosalone poisoning on the cation-linked ATPases of central nervous system of Rana tigrina (Daudin). Comp Biochem Physiol C 111:451–455

    CAS  Google Scholar 

  • Barim O, Erisir M (2009) The effect of dietary antioxidants on the arginase activity and nitric oxide level of freshwater crayfish (Astacus leptodactylus Esch, 1823). Kafkas Univ Vet Fak 15:745–750

    Google Scholar 

  • Barim-Oz O (2018) The effects on some non-enzymatic antioxidants and oxidative stress of Astacus leptodactylus (Esch., 1823) of starvation periods. Aquac Nutr 24:492–503

    Google Scholar 

  • Begum G (2011) Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiol Biochem 37:61–69

    CAS  Google Scholar 

  • Begum G, Vijayaraghavan S (1994) In vivo inhibition of branchial Na+-K+, Mg+2 ATPase of Clarias batrachus exposed to sub-lethal concentration of dimethoate. Pollut Res 13:213–216

    CAS  Google Scholar 

  • Bell JG, Cowey CB, Adro JW, Shanks AM (1985) Some effects of vitamine and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmogairdneri). Br J Nutr 53:149–157

    CAS  Google Scholar 

  • Blahová J, Plhalová L, Hostovsky M, Divišová L, Dobšíková R, Mikulíková I, Stěpánová S, Svobodová Z (2013) Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 61:82–85

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Buric M, Kouba A, Machova J, Mahovska I, Kozak P (2013) Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. Int J Environ Sci Technol 10:607–610

    CAS  Google Scholar 

  • Cattaneo R, Moraes BS, Loro VL, Pretto A, Menezes C, Sartori GM, Clasen B, de Avila LA, Marchesan E, Zanella R (2012) Tissue biochemical alterations of Cyprinus carpio exposed to commercial herbicide containing clomazone under rice-field conditions. Arch Environ Contam Toxicol 62:97–106

    CAS  Google Scholar 

  • Chaabane M, Tir M, Hamdi S, Boudawara O, Jamoussi K, Boudawara T, Ghorbel RE, Zeghal N, Soudani N (2016) Improvement of heart redox states contributes to the beneficial effects of selenium against penconazole-induced cardiotoxicity in adult rats. Biol Trace Elem Res 169:261–270

    CAS  Google Scholar 

  • Chaabane M, Ghorbel I, Elwej A, Mnif H, Boudawara T, Chaabouni SE, Zeghal N, Soudani N (2017) Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats. Hum Exp Toxicol 36:854–866

    CAS  Google Scholar 

  • Costa V, Amorim M, Quintanilha A, Moradas-Ferreira P (2002) Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33:1507–1515

    CAS  Google Scholar 

  • Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis (2-nitrobenzoic acid). Anal Biochem 183:195–196

    CAS  Google Scholar 

  • David M, Sangeetha J, Harish ER, Shrinivas J, Naik VR (2014) Deltamethrin induced alteration in Na+ -K+ , Mg2+, Ca2+ associated ATPases activity in the freshwater fish Cirrhinus mrigala. Int J Pure Appl Zool 2:175–181

    Google Scholar 

  • De Domenico E, Mauceri A, Giordano D, Maisano M, Giannetto A, Parrino V, Natalotto A, D’Agata A, Cappello T, Fasulo S (2013) Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments. Ecotox Environ Safe 97:114–123

    Google Scholar 

  • Ding F, Song WH, Guo J, Gao ML, Hu WX (2009) Oxidative stress and structure activity relationship in the zebrafish (Danio rerio) under exposure to paclobutrazol. J Environ Sci Health B 44:44–50

    CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 4916:4912–4916

    Google Scholar 

  • Ellman GL, Andres DC (1961) New and rapid colorimetric determination of aceytlcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    CAS  Google Scholar 

  • Fernández AV, Almeida EA, Barea JL (2007) Esterases as pesticide biomarkers in crayfish (Procambarus clarkii, Crustacea): Tissue distribution, sensitivity to model compounds and recovery from inactivation. Comp Biochem Physiol C 145:404–412

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Han Y, Liu T, Wang J, Wang J, Zhang C, Zhu L (2016) Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers. Pestic Biochem Physiol 133:13–19

    CAS  Google Scholar 

  • Harlioglu MM, Cakmak MN, Köprücü K, Aksu O, Harlioglu AG, Mise Yonar S, Cakmak Duran T, Ozcan S, Gundogdu H (2013) The effect of dietary n-3 series fatty acids on the number of pleopadal egg and stage 1 juvenile in freshwater crayfish, Astacus leptodactylus Eschscholtz. Aquac Res 44:860–868

    CAS  Google Scholar 

  • Hatami M, Banaee M, Haghi BN (2019) Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere 219:981–988

    CAS  Google Scholar 

  • Hemalatha D, Amala A, Rangasamy B, Nataraj B, Ramesh M (2015) Sublethal toxicity of quinalphoson oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. EnvironToxicol 31:1399–1406

    Google Scholar 

  • Husak VV, Mosiichuk NM, Storey JM, Storey KB, Lushchak VI (2017) Acute exposure to the penconazole-containing fungicide Topas partially augments antioxidant potential in goldfish tissues. Comp Biochem Physiol C 193:1–8

    CAS  Google Scholar 

  • IUPAC (2019) Environmental fate-ecotoxicology-human health-A to Z index. Retrieved from https://sitem.herts.ac.uk/aeru/iupac/Reports/509.htm.

  • Jin Y, Zheng S, Pu Y, Shu L, Sun L, Liu W, Fu Z (2011) Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere 82:398–404

    CAS  Google Scholar 

  • JMPR (2016) Pesticide residues in food: joint FAO/WHO meeting on pesticide residues report

  • Jokanović M (2001) Biotransformation of organophosphorus compounds. Toxicology 166:139–160

    Google Scholar 

  • Karaca M, Varisli L, Korkmaz K, Özaydin O, Perçin F, Orhan H (2014) Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicol Lett 230:198–207

    CAS  Google Scholar 

  • Kaur M, Jindal R (2017) Oxidative stress response in liver, kidney and gills of ctenopharyngodon idellus (cuvier & valenciennes) exposed to chlorpyrifos. MOJ Biol Med 1:103–112

    Google Scholar 

  • Kellar KJ (2006) Overcoming inhibitions. Proc Natl Acad Sci U S A 103:13263–13264

    CAS  Google Scholar 

  • Khalil AM (2015) Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos. Ecotoxicol Environ Saf 116:137–142

    CAS  Google Scholar 

  • Korkmaz V, Güngördü A, Ozmen M (2018) Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicol Environ Saf 160:265–272

    CAS  Google Scholar 

  • Küster E (2005) Cholin and carboxylesterase activities in developing zebrafish embryos (Danio rerio) and their potential use for insecticide hazard assessment. Aquat Toxicol 75:76–85

    Google Scholar 

  • Leksrisawat B, Cooper AS, Gilberts AB, Cooper RL (2010) Muscle receptor organs in the crayfish abdomen: a student laboratory exercise in proprioception. J Vis Exp 45:2323

    Google Scholar 

  • Li ZH, Zlabek V, Li P, Grabic R, Velisek J, Machova J, Randak T (2010) Biochemical and physiological responses in liver and muscle of rainbow trout after long-term exposure to propiconazole. Ecotoxicol Environ Saf 73:1391–1396

    CAS  Google Scholar 

  • Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Kolarova J, Li P, Randak T (2013) Multiple biomarkers responses in juvenile rainbow trout, Oncorhynchus mykiss, after acute exposure to a fungicide propiconazole. Environ Toxicol 28:119–126

    CAS  Google Scholar 

  • Lopes DFC, Assisb CRD, Sant’Anna MCS, Silva JF, Bezerra RS, Frédou FL (2019) Brain acetylcholinesterase of three perciformes: from the characterization to the in vitro effect of metal ions and pesticides. Ecotoxicol Environ Saf 173:494–503

    CAS  Google Scholar 

  • Ma J, Zhu J, Wang W, Ruan P, Rajeshkumar S, Li X (2019) Biochemical and molecular impacts of glyphosate-based herbicide onthe gills of common carp. Environ Pollut 252:1288–1300

    CAS  Google Scholar 

  • Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145

    CAS  Google Scholar 

  • Mahnaz SS, Sadegh P (2018) Evaluation of toxicity and lethal concentration (LC50) of silver and selenium nanoparticle in different life stages of the fish Tenualosa ilish (Hamilton 1822). Oceanogr Fish Open Access J 7:555–722

    Google Scholar 

  • Marigoudar SR (2012) Cypermethrin induced some pathophysiological and biochemical changes in the freshwater teleost, Labeo rohita (Hamilton). PhD Thesis, Karnatak University, Dharwad, India

  • Mercadante R, Polledri E, Rubino FM, Mandic-Rajcevic S, Vaiani A, Colosio C, Moretto A, Fustinoni S (2019) Assessment of penconazole exposure in winegrowers using urinary biomarkers. Environ Res 168:54–61

    CAS  Google Scholar 

  • Mercadante R, Polledri E, Scurati S, Moretto AS (2016) Fustinoni Identification of metabolites of the fungicide penconazole in human urine. Chem Res Toxicol 29:1179–1186

    CAS  Google Scholar 

  • Mercan U (2004) Importance of free radicals in toxicology. J YYU Vet Fac 15:91–96

    Google Scholar 

  • Metz JR, Van Den Burg EH, Bonga SEW, Flik G (2003) Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L acclimated to different temperatures. J Exp Biol 206:2273–2280

    CAS  Google Scholar 

  • Moreno I, Pichardo S, Góomez-Amores L, Mate A, Vazquez CM, Cameán AM (2005) Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 45:395–402

    CAS  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    CAS  Google Scholar 

  • Mu X, Shen G, Huang Y, Luo J, Zhu L, Qi S, Li Y, Wang C, Li X (2017) The enantioselective toxicity and oxidative stress of beta cypermethrin on zebrafish. Environ Pollut 229:312–320

    CAS  Google Scholar 

  • Murussi CR, Costa MD, Leitemperger JW, Flores-Lopes F, Menezes CC, Loebens L, Avila LA, Rizzetti TM, Adaime MB, Zanella R, Loro VL (2016) Acute exposure to the biopesticide azadirachtin affects parameters in the gills of common carp (Cyprinus carpio). Comp Biochem Physiol C 180:49–55

    CAS  Google Scholar 

  • Muthulakshmi S, Maharajan K, Habibi HR, Kadirvelu K, Venkataramana M (2018) Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): role of oxidative stress revealed by a multi biomarker study. Chemosphere 198:111–121

    CAS  Google Scholar 

  • Narra MR, Rajender K, Reddy RR, Rao JV, Begum G (2015) The role of vitamin C as antioxidant in protection biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 132:172–178

    CAS  Google Scholar 

  • Nikolaou S, Efstathiou P, Tiggiridou M, Arabatzis N, Piera Y, Aletrari M (2017) Monitoring of pesticides in drinking, surface and ground water of Cyprus by liquid-liquid and solid phase extraction in combination with GC/MS and UPLC/MS/MS. Water Resour Prot 9:1184–1198

    CAS  Google Scholar 

  • Nunes MEM, Müller TE, Murussi C, Amaral AMB, Gomes JLC, Marins AT, Leitemperger J, Rodrigues CCR, Fiuz TL, Costa MD, Severo ES, Rosemberg DB, Loro VL (2018) Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish-a comparative study. Comp Biochem Physiol C 206:48–53

    Google Scholar 

  • Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK (2010) Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int J Env Res Pub He 7:3298–3312

    CAS  Google Scholar 

  • Oruc EO (2010) Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pestic Biochem Physiol 96:160–166

    CAS  Google Scholar 

  • Ozmen M, Ayas Z, Güngördü A, Ekmekçi FG, Yerli S (2008) Ecotoxicological assessment of water pollution in Sarıyar Dam Lake, Turkey. Ecotox Environ Safe 70:163–173

    CAS  Google Scholar 

  • Pamanji R, Bethu MS, Yashwanth B, Leelavathi S, Rao JV (2015) Developmental toxic effects of monocrotophos, an organophosphorus pesticide, on zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 22:7744–7753

    CAS  Google Scholar 

  • Paranjape K, Gowariker V, Krishnamuthy VN, Gowariker S (2015) The pesticide encyclopedia. Pondicherry, India

    Google Scholar 

  • Parke DV, Piotrowski JK (1996) Glutathione: its role in detoxication of reactive oxygen species and environmental chemicals. Toxicol 4:1–13

    Google Scholar 

  • Parlak V (2018) Evaluation of apoptosis, oxidative stress responses, AChE activity andbody malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere 207:397–403

    CAS  Google Scholar 

  • Parvez S, Sayeed I, Raisuddin S (2006) Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent. Ecotoxicol Environ Saf 65:2–66

    Google Scholar 

  • Peffer RC, Moggs JG, Pastoor T, Currie RA, Wright J, Milburn G, Waechter F, Rusyn I (2007) Mouse liver effects of cyproconazole, a triazole fungicide: role of the constitutive androstane receptor. Toxicol Sci 99:315–325

    CAS  Google Scholar 

  • Pham B, Miranda A, Allinson G, Nugegoda D (2017) Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. Ecotoxicol Environ Saf 143:283–288

    CAS  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    CAS  Google Scholar 

  • Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    CAS  Google Scholar 

  • Regulation of the European Parliament and of the Council, of 16 December 2008, on classification, labelling and packaging of substances and mixtures, amending and repealing directives (EC) No 1272/2008

  • Rodriguez-Fuentes G, Rubio-Escalante FJ, Norena-Barroso E, Escalante Herrera KS, Schlenk D (2015) Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp Biochem Physiol C Toxicol Pharmacol 19:172–173

    Google Scholar 

  • Ross MK, Streit TM, Herring KL, Xie S (2010) Carboxylesterases: dual roles in lipid and pesticide metabolism. J Pestic Sci 35:257–264

    CAS  Google Scholar 

  • Sancho E, Fernandez-Vega C, Ferrando MD, Andreu-Moliner E (2003) Eel ATPase activity as biomarker of thiobencarb exposure. Ecotox Environ Safe 56:434–441

    CAS  Google Scholar 

  • Santhoshkumar P, Shivanandappa T (1999) In vitro sequestration of two organophosphorus homologs by the rat liver. Chem Biol Interact 119:277–282

    Google Scholar 

  • Santos TG, Martinez CBR (2012) Atrazine promotes biochemical changes and DNA damage in a neotropical fish species. Chemosphere 89:1118–1125

    CAS  Google Scholar 

  • Saxena TB, Zachariassen KE, Jorgensen L (2000) Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comp Biochem Physiol 127:1–9

    CAS  Google Scholar 

  • Shadegan MR, Banaee M (2018) Effects of dimethoate alone and in combination with Bacilar fertilizer on oxidative stress in common carp, Cyprinus carpio. Chemosphere 208:101–107

    CAS  Google Scholar 

  • Shwetha AD, Hosetti BB (2012) Effect of exposure to sublethal concentrations of zinc cyanide on tissue ATPase activity in the fresh water fish, Cirrhinus mrigala (HAM). Arch Biol Sci Belgrade 64:257–263

    Google Scholar 

  • Skurdal J, Taugbol T (2001) Crayfish of commercial importance-Astacus DM Holdich (Ed.) Biology of Freshwater Crayfish, Blackwell Science pp 467-510 ISBN 0-632-05431-X.2

  • Slaninova A, Smutna M, Modra H, Svobodova V (2009) A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol 30:2–12

    CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    CAS  Google Scholar 

  • Turkish Food Codex Regulation on Maximum Residue Limits of Pesticides 2016. T.C. Official Gazette, 29899, November 25.

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Google Scholar 

  • Vieira CED, Pérez MR, Acayaba RDA, Raimundo CCM, dos Reis Martinez CB (2018) DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195:125–134

    CAS  Google Scholar 

  • Vineela D, Reddy SJ (2014) Impact of lihocin on immuno haematological and antioxidant enzyme indices of carp fish. Int J Pharm Life Sci 5:3517–3525

    Google Scholar 

  • Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock BD (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol 195:117–178

    CAS  Google Scholar 

  • Yoloğlu E (2019) Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and total ATPase activities in gills of freshwater mussels exposed to penconazole. Comm J Biol 3:88–92

    Google Scholar 

  • Zhang X, Wang X, Luo F, Sheng H, Zhou L, Zhong Q, Lou Z, Sun H, Yang M, Cui X, Chen Z (2019) Application and enantioselective residue determination of chiral pesticidepenconazole in grape, tea, aquatic vegetables and soil by ultra performanceliquid chromatography-tandem mass spectrometry. Ecotox Environ Safe 172:530–537

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Alkan Uçkun.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkan Uçkun, A., Barım Öz, Ö. Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823). Environ Sci Pollut Res 27, 35626–35637 (2020). https://doi.org/10.1007/s11356-020-09595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09595-2

Keywords

Navigation