Skip to main content
Log in

Metabolic effects of trichlorfon (Masoten®) on the neotropical freshwater fish pacu (Piaractus mesopotamicus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Fish parasites are among the crucial limiting factors in aquaculture. The organophosphorous pesticide trichlorfon is widely used as an insecticide and against fish parasites worldwide. In this study, the effects of environmental trichlorfon on biochemical and physiological parameters were investigated in Piaractus mesopotamicus (pacu), a widely farmed fish in South America, through sublethal exposure (8 µg L−1, 10 % of the LC50; 96 h) and recovery. The activity of brain acetylcholinesterase (AChE) was reduced after exposure (15.5 %) and remained decreased during the recovery (21.5 %). In white muscle, AChE activity decreased 31 % only after recovery. Alkaline phosphatase (ALP) and acid phosphatase (ACP) activities of the liver, muscle and plasma were steady during exposure. However, after the recovery period, ALP activity was increased in the liver and muscle and decreased in plasma, while ACP was increased in the liver and decreased in muscle. Intermediary metabolism was also affected by trichlorfon, depicting increase of energetic demand (hypoglycemia, neoglucogenesis and lipid catabolism), which remained even after recovery. These results indicate that P. mesopotamicus is adversely affected by sublethal concentrations of trichlorfon and are useful for assessing the impact as well as the pros and cons of its use in controlling fish parasites in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrahari S, Gopal K (2009) Fluctuations of certain biochemical constituents and markers enzymes as a consequence of monocrotophos toxicity in the edible freshwater fish, Channa punctatus. Pestic Biochem Physiol 94:5–9

    Article  CAS  Google Scholar 

  • Aguiar LH, Moraes G, Avilez IM, Altran AE, Corrêa CF (2004) Metabolic effects of Folidol 600® on the neotropical freshwater fish matrinxã, Brycon cephalus. Environ Res 95:224–230

    Article  PubMed  Google Scholar 

  • Banaee M, Mirvagefei AF, Rafei GR, Majazi Amiri B (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Int J Environ Res 2(2):189–198

    CAS  Google Scholar 

  • Banaee M, Sureda A, Mirvaghefi AR, Ahmadi K (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99:1–6

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Bergmeyer HU, Beach WD (1983) Methods of enzymatic analysis. Weinhein Durfield Beach, Florida Bassel

    Google Scholar 

  • Bidinotto PM, Moraes G, Souza RHS (1997) Hepatic glycogen and glucose in eight tropical fresh water teleost fish: a procedure for field determination of micro samples. Bol Tec CEPTA 10:53–60

    Google Scholar 

  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23

    Article  CAS  Google Scholar 

  • Clauss TM, Dove ADM, Arnold JE (2008) Hematologic disorders of fish. Vet Clin Exot Anim 11:445–462

    Article  Google Scholar 

  • Coelho S, Oliveira R, Pereira S, Musso C, Domingues I, Bhujel RC, Soares AMVM, Nogueira AJA (2011) Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Aquat Toxicol 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Copley NG (1941) Alloxan and ninhydrin test. Analyst 66:492–493

    CAS  Google Scholar 

  • Cossarini-Dunier M, Siwicki AK, Demael A (1991) Effects of organophosphorus insecticides. Effects of Trichlorfon and Dichlorvos on the immune response of carp (Cyprinus carpio). III. In vitro effects on lymphocyte proliferation and phagocytosis and in vivo effects on humoral response. Ecotoxicol Environ Saf 22:79–87

    Article  Google Scholar 

  • Cunha-Bastos VLF, Rossini A, Ribeiro Pinto LF, de Lima LM, Ceccarelli PS, Coelho MGP, Cunha Bastos J (1998) Different sensitivities to paraoxon of brain and serum cholinesterases from pacu, an indigenous Brazilian fish. Bull Environ Contam Toxicol 60:1–8

    Article  CAS  Google Scholar 

  • Czeizel AE, Elek CS, Gundy S, Métneki J, Tímár L, Nemes E, Virágh Z, Tusnady G, Reis A, Sperling K (1993) Environmental trichlorfon and cluster of congenital abnormalities. The Lancet 341:539–542

    Article  CAS  Google Scholar 

  • Dórea JG (2008) Persistent, bioaccumulative and toxic substances in fish: human health considerations. Sci Total Environ 400:93–114

    Article  PubMed  Google Scholar 

  • Drabkin DL (1948) The standardization of hemoglobin measurement. Am J Med Sci 215:110–111

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Giles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–358

    Article  CAS  Google Scholar 

  • Dutta HM, Dogra JVV, Singh NK, Roy PK, Nassar SST, Adhiraki S, Munshi JSD, Richmonds C (1992) Malathion induced changes in the serum proteins and hematological parameters of an indian catfish Heteropneustes fossilis (Bloch). Bull Environ Contam Toxicol 49:91–97

    CAS  PubMed  Google Scholar 

  • Dyk JSV, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres JR, Featherstone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Eto M (1974) Organophosphorous pesticides: organic and biological chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Fanta E, Rios FS, Romão S, Vianna ACC, Freiberger S (2003) Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol Environ Saf 54:119–130

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Li ZB, Guo XQ, Guo JP (2008) Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defense system and acetylcholinesterase of Tilapia nilotica in vitro. Pestic Biochem Physiol 92:107–113

    Article  CAS  Google Scholar 

  • Ferrari A, Venturino A, D’Angelo AMP (2007) Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchys mykiss. Comp Biochem Physiol C: Toxicol Pharmacol 146:308–313

    Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentzkow CJ, Masen JM (1942) An accurate method for the determination of blood urea nitrogen by direct nesslerization. J Biol Chem 143:531–544

    CAS  Google Scholar 

  • Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV (2001) Toxicity study of diethyl phthalate on freshwater fish Cirrhinus mrigala. Ecotoxicol Environ Saf 53:255–258

    Article  Google Scholar 

  • Guimarães ATB, Silva de Assis HC, Boeger W (2006) The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol Environ Saf 68:57–62

    Article  PubMed  Google Scholar 

  • Gupta RC (2005) Encyclopedia of toxicology. Elsevier, Oxford

    Google Scholar 

  • Gupta RC, Milatovic D (2012) Organophosphates and carbamates. In: Gupta RC (ed) Veterinary toxicology basic and clinical principles, 2nd edn. Academic Press, San Diego, pp 573–585

    Google Scholar 

  • Hamilton MA, Russo RC, Thurston V (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hardstone MC, Scott JG (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Harrower JRG, Brown CH (1972) Blood lactic acid. A micromethod adapted to field collection of microliter samples. J Appl Physiol 32:224–228

    Google Scholar 

  • Inoue LAKA, Santos-Neto C, Moraes G (2003) Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1896). Cienc Rural 33:943–947

    Article  Google Scholar 

  • Jiang QT, Lee TKM, Chen K, Wong HL, Zheng JS, Giesy JP, Lo KKW, Yamashita N, Lam PKS (2005) Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China. Environ Pollut 136:155–165

    Article  CAS  PubMed  Google Scholar 

  • Jokanovic M (2001) Biotransformation of organophosphorus compounds. Toxicol 166:139–160

    CAS  Google Scholar 

  • Jyothi B, Narayan G (1999) Certain pesticide-induced carbohydrate metabolic disorders in the serum of freshwater fish Clarias batrachus (Linn.). Food Chem Toxicol 37:417–421

    Article  CAS  PubMed  Google Scholar 

  • Kavitha P, Rao JV (2007) Oxidative stress and locomotor behavior response as biomarker for assessing recovery status of mosquito fish, Gambusia affinis after lethal effects of an organophosphate insecticide, monocrotophos. Pestic Biochem Physiol 87:182–188

    Article  CAS  Google Scholar 

  • Köprücü SS, Köprücü K, Ural MS, Ispir Ü, Pala M (2006) Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.). Pestic Biochem Physiol 86:99–105

    Article  Google Scholar 

  • Kruger NJ (1994) The Bradford method for protein quantification. Methods Mol Biol 32:9–15

    CAS  PubMed  Google Scholar 

  • Lopes RB, Paraiba LC, Ceccarelli PS, Tornisielo VL (2006) Bioconcentration of trichlorfon insecticide in pacu (Piaractus mesopotamicus). Chemosphere 64:56–62

    Article  CAS  PubMed  Google Scholar 

  • Lu GD (1939) The metabolism of pyruvic acid in normal and vitamin B-deficient state. I. A rapid specific and sensitive method for the estimation of blood pyruvate. Biochem J 33:249–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • Maduenho LP, Martinez CBR (2008) Acute effects of diflubenzuron on the freshwater fish Prochilodus lineatus. Comp Biochem Physiol C: Toxicol Pharmacol 148:265–272

    Google Scholar 

  • Mataqueiro MI, Nakaghi LSO, Souza JP, Cruz C, Oliveira GH, Urbinati EC (2008) Histopathological changes in the gill, liver and kidney of pacu (Piaractus mesopotamicus, Holmberg, 1887) exposed to various concentrations of trichlorfon. J Appl Ichthyol 25:1–4

    Google Scholar 

  • Milan N (1965) Colorimetric ultra micromethod for the determination of free fatty acids. J Lipid Res 6:431–433

    Google Scholar 

  • Miron DS, Crestani M, Shettinger MR, Morsch VM, Baldisserotto B, Tierno A, Moraes G, Vieira VLP (2005) Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol Environ Saf 61:398–403

    Article  CAS  Google Scholar 

  • Molina R, Moreno I, Pichardo S, Jos A, Moyano R, Monterde JG, Cameán A (2005) Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46:725–735

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DA, Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C: Toxicol Pharmacol 2:141–149

    Google Scholar 

  • Moraes BS, Loro VL, Glusczak L, Pretto A, Menezes C, Marchezan E, Machado SO (2007) Effects of four rice herbicides in some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere 68:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Murty AS (1986) Toxicology of pesticide to fish. CRC Press, Boca Raton

    Google Scholar 

  • Nandan SB, Nimila PJ (2012) Lindane toxicity: histopathological, behavioural and biochemical changes in Etroplus maculatus (Bloch, 1795). Mar Environ Res 76:63–70

    Article  Google Scholar 

  • Pereira VM, Bortolotto JW, Kist LW, Azevedo MB, Fritsch RS, Oliveira RL, Pereira TCB, Bonan CD, Vianna MR, Bogo MR (2012) Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). NeuroToxicol 33:469–475

    Article  CAS  Google Scholar 

  • Rahimi R, Abdollahi M (2007) A review on the mechanisms involved in hyperglycemia induced by organophosphorus pesticides. Pestic Biochem Physiol 88:115–121

    Article  CAS  Google Scholar 

  • Rao JV (2006a) Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere 65:1814–1820

    Article  CAS  PubMed  Google Scholar 

  • Rao JV (2006b) Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pestic Biochem Physiol 86:78–84

    Article  CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    CAS  PubMed  Google Scholar 

  • Salte R, Syvertsen C, Kjonnoy M, Fonnum F (1987) Fatal acetylcholinesterase inhibition in salmonids subjected to a routine organophosphate treatment. Aquaculture 61:173–179

    Article  CAS  Google Scholar 

  • Sancho E, Ferrando MD, Fernandéz C, Andreu E (1998) Liver energy metabolism of Anguilla anguilla after exposure to fenitrothion. Ecotoxicol Environ Saf 41:168–175

    Article  CAS  PubMed  Google Scholar 

  • Sancho E, Fernández-Vega C, Villarroel MJ, Andreu-Moliner E, Ferrando MD (2009) Physiological effects of tricyclazole on zebrafish (Danio rerio) and post-exposure recovery. Comp Biochem Physiol C: Toxicol Pharmacol 150:25–32

    Google Scholar 

  • Sharbidre AA, Metkari V, Patode P (2011) Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulata. Pest Biochem Physiol 101:132–141

    Article  CAS  Google Scholar 

  • Silva HC, Medina HSG, Fanta E, Bacila M (1993) Sub-lethal effects of the organophosphate folidol 600 (methyl parathion) on Callichthys callichtys (pisces:teleostei). Comp Biochem Physiol C: Toxicol Pharmacol 2:197–201

    Article  Google Scholar 

  • Singh N, Srivastava AK (1994) Formothion induced hematological changes in the freshwater Indian catfish, Heteropneustes fossilis. J Ecotoxicol Environ Monit 4:137–140

    Google Scholar 

  • Sinha AK, Vanparys C, de Boeck G, Kestemont P, Wang N, Phuong NT, Scippo M, de Coen W, Robbens J (2010) Expression characteristics of potential biomarker genes in Tra catfish, Pangasianodon hypophthalmus, exposed to trichlorfon. Comp Biochem Physiol D 5:207–216

    Google Scholar 

  • Soengas JL, Aldegunde M (2002) Energy metabolism of fish brain. Comp Biochem Physiol B: Biochem Mol Biol 131:271–296

    Article  Google Scholar 

  • Straus DL, Chambers JE (1995) Inhibition of acetylcholinesterase and aliesterases of fingerling channel catfish by chlorpyrifos, parathion, and S, S,-tributyl phosphorotrithioate (DEF). Aquat Toxicol 33:311–324

    Article  CAS  Google Scholar 

  • Svoboda M, Lusková V, Drastichová J, Zlábek V (2001) The effect of diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno 70:457–465

    Article  CAS  Google Scholar 

  • Tavares-Dias M, Martins ML, Kronka SN (1999) Evaluation of the haematological parameters in Piaractus mesopotamicus Holmberg (Osteichthyes, Characidae) with Argulus sp. (Crustacea, Branchiura) infestation and treatment with organophosphate. Rev Bras Zool 16:553–555

    Google Scholar 

  • Thomaz JM, Martins ND, Monteiro DA, Rantin FT, Kalinin AL (2009) Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON®). Ecotoxicol Environ Saf 72:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Tierney KB, Singh CR, Ross PS, Kennedy CJ (2007) Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxicol 81:55–64

    Article  CAS  PubMed  Google Scholar 

  • Torre FR, Salibián A, Ferrari L (2007) Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere 68:1582–1590

    Article  PubMed  Google Scholar 

  • Touart LW (1995) The federal insecticide, fungicide, and rodenticide act. In: Rand GM (ed) Fundamentals of aquatic toxicology, 3rd edn. CRC Press, Boca Raton, pp 657–668

    Google Scholar 

  • Trinder P (1969) Determination of blood glucose using 4-amino phenazone as oxygen receptor. Ann Clin Biochem 6:24

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1997) R.E.D. Facts Prevention, pesticides and toxic substances. EPA 738-F96-017. http://www.epa.gov/oppsrrd1/REDs/factsheets/0104fact.pdf. Accessed 26 Oct 2013

  • Verma SR, Rani S, Dalela RC (1981) Pesticide-induced physiological alterations in certain tissues of a fish, Mystus vittatus. Toxicol Lett 9:327–332

    Article  CAS  PubMed  Google Scholar 

  • Walker CH (1995) Biochemical biomarkers in ecotoxicology - some recent developments. Sci Total Environ 171:189–195

    Article  CAS  PubMed  Google Scholar 

  • Walsh TK, Lyndon AR, Jamienson DJ (2007) Identification of cDNAs induced by the organophosphate trichlorphon in the parasitic copepod Lepeophtheirus salmonis (Copepoda; Caligidae). Pestic Biochem Physiol 88:26–30

    Article  CAS  Google Scholar 

  • Wintrobe MM (1934) Variations in size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol 51:32–49

    Google Scholar 

  • World Health Organization (1992) Trichlorfon environmental health criteria 132. http://www.inchem.org/documents/ehc/ehc/ehc132.htm. Accessed 26 Apr 2014

  • Xu W, Liu W, Liu Z (2009) Trichlorfon-induced apoptosis in hepatocyte primary cultures of Carassius auratus gibelio. Chemosphere 77:895–901

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu W, Lu K, Jiang Y, Li G (2012) Effect of trichlorfon on oxidative stress and hepatocyte apoptosis of Carassius auratus gibelio in vivo. Fish Physiol Biochem 38:769–775

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H, Endoh YS (2005) Acute toxicity to freshwater organisms of antiparasitic drugs for veterinary use. Environ Toxicol 20:60–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the São Paulo Research Foundation (FAPESP, proc. no. 2007/57927-8) as a master scholarship for F. P. Venturini. Thanks are given to N. S. Shiogiri, S. P. Carraschi and A. D. A. da Silva and to all colleagues at NEPEAM and the Laboratory of Adaptive Biochemistry for their support in collecting the samples. We would also like to thank Professor C. J. Kennedy for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Moraes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturini, F.P., Moraes, F.D., Cortella, L.R.X. et al. Metabolic effects of trichlorfon (Masoten®) on the neotropical freshwater fish pacu (Piaractus mesopotamicus). Fish Physiol Biochem 41, 299–309 (2015). https://doi.org/10.1007/s10695-014-9983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9983-y

Keywords

Navigation