Skip to main content
Log in

Design of control strategies for nutrient removal in a biological wastewater treatment process

  • Environmental and Energy Management
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wastewater treatment plants (WWTP) are highly non-linear operations concerned with huge disturbances in flow rate and concentration of pollutants with uncertainties in the composition of influent wastewater. In this work, the activated sludge process model with seven reactor configuration in the ASM3bioP framework is used to achieve simultaneous removal of nitrogen and phosphorus. A total of 8 control approaches are designed and implemented in the advanced simulation framework for assessment of the performance. The performance of the WWTP (effluent quality index and global plant performance) and the operational costs are also evaluated to compare the control approaches. Additionally, this paper reports a comparison among proportional integral (PI) control, fuzzy logic control, and model-based predictive control (MPC) configurations framework. The simulation outcomes indicated that all three control approaches were able to enhance the performance of WWTP when compared with open loop operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AE:

Aeration energy rate (kWh/day)

ASM1:

Activated sludge model No. 1

ASM2:

Activated sludge model No. 2

ASM2d:

Activated sludge model No .2d

ASM3:

Activated sludge model No. 3

BWTP:

Biological waste water treatment plants

BOD5 :

Biological oxygen demand

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

EQI:

Effluent quality index

IQI:

Influent quality index

K :

Proportional gain

K La:

Oxygen transfer coefficient

N:

Nitrogen

NO:

Nitrate

P:

Phosphorus

PE:

Pumping energy consumption (kWh/day)

HUk :

Pollutant load corresponding to component

Q o :

Influent flow rate (m3/day)

Q intr :

Internal recycle flow rate (m3/day)

Q r :

Return sludge flow rate (m3/day)

Q w :

Waste sludge flow rate (m3/day)

S A :

Fermentation products (g COD/m3)

S F :

Readily biodegradable organic substrate

S HCO :

Alkalinity of the waste water (HCO3/m3)

S I :

Inert soluble organic material (g COD/m3)

S NH :

Ammonium and ammonia nitrogen (g N/m3)

S NO :

Nitrate and nitrite nitrogen (g N/m3)

S N2 :

Dinitrogen (g N/m3)

S PO4 :

Inorganic soluble phosphate (g P/m3)

S S :

Readily biodegradable organic substrate (g COD/m3)

t o :

Start time

t f :

End time

T BOD :

Total BOD concentration

T COD :

Total COD concentration

T NO :

Nitrate concentration

T Ntot :

Total N concentration

T Ptot :

Total phosphorous concentration

T TKN :

Total organic N concentration.

T TSS :

Total suspended solids concentration

WWTP:

Waste water treatment plant

X A :

Nitrifying organisms (g COD/m3)

X H :

Heterotrophic organisms (g COD/m3)

X I :

Inert particulate organic material (g COD/m3)

X S :

Slowly biodegradable substrates (g COD/m3)

X PAO :

Phosphate accumulating organisms (g COD/m3)

X PHA :

Cell internal storage product of PAOs (g COD/m3)

X PP :

Polyphosphate (g P/m3)

X STO :

Cell inner storage product of heterotopy

X TSS :

Suspended solids (g SS/m3)

α j :

Cost factor for components j

j :

EQ, AE, PE, and SP

β k :

Weighting factor for components K

T k :

TBOD,TCOD,TTKN,TNO3,TPtot,TTSS

References

  • Copp J (2002) The COST simulation benchmark: description and simulator manual. Office for official publications of the European Community, Luxembourg

    Google Scholar 

  • Gernaey KV, Jørgensen SB (2004) Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes. Control Eng Pract 12(3):357–373. https://doi.org/10.1016/S0967-0661(03)00080-7

    Article  Google Scholar 

  • Gernaey KV, Jeppsson U, Vanrolleghem PA, Copp JB (2014) Benchmarking of Control Strategies for Wastewater Treatment Plants. Scientific and Technical Report Series, No. 23, IWA Publishing, London, UK

  • Grimholt C, Skogestad S (2018) Optimal PI and PID control of first-order plus delay processes andevaluation of the original and improved SIMC rules. J Process Control 70:36–46. https://doi.org/10.1016/j.jprocont.2018.06.011

    Article  CAS  Google Scholar 

  • Gujer W, Henze M, Mino T, Matsuo T, Wentzel MC, Marais GVR (1995) The activated sludge model No. 2: biological phosphorus removal. Water Sci Technol 31(2):1–11. https://doi.org/10.1016/0273-1223(95)00175-M

    Article  CAS  Google Scholar 

  • Gujer W, Henze M, Min T, van Loosdrecht MCM (2000) Activated sludge model no. 3. Water Sci Technol 39(1):183–193. https://doi.org/10.1016/S0273-1223(98)00785-9

    Article  Google Scholar 

  • Hauduc H, Gillot S, Rieger L, Ohtsuki T, Shaw A, Takács I, Winkler S (2009) Activated sludge modelling in practice: an international survey. Water Sci Technol 60(8):1943–1951. https://doi.org/10.2166/wst.2009.223

    Article  CAS  Google Scholar 

  • Henze M, Gujer W, Mino T, van Loosdrecht MC (2000) Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No. 9, IWA Publishing, London, UK

  • Hongyang X, Pedret C, Santin I, Vilanova R (2018) Decentralized model predictive control for N and P removal in wastewater treatment plants. Conference on system theory, control and computing (ICSTCC) pp.224-230.IEEE. https://doi.org/10.1109/ICSTCC.2018.8540675

  • Huang M, Wan J, Hu K, Ma Y, Wang Y (2013) Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process. J Ind Microbiol Biotechnol 40:1393–1401. https://doi.org/10.1007/s10295-013-1334-y

    Article  CAS  Google Scholar 

  • Huang M, Ma Y, Wan J, Wang Y, Chen Y, Yoo C-K (2014) Improving nitrogen removal using a fuzzy neural network-based control system in the anoxic/oxic process. Environ Sci Pollut Res 21:12074–12084. https://doi.org/10.1007/s11356-014-3092-4

    Article  CAS  Google Scholar 

  • Ingildsen P (2002) Realizing full-scale control in wastewater treatment systems using in situ nutrient sensors. Department of Industrial Electrical Engineering and Automation [Institutionen for industriellelektronikoch automation], Univ.

  • Kim H, Kim Y, Hoang TQ, Baek G, Kim S, Kim C (2013) Application of real-time feedback control strategies based on effluent NH4-N and NOX-N concentrations in an A2/O process. Korean J Chem Eng 30(8):1578–1587. https://doi.org/10.1007/s11814-013-0084-x

    Article  CAS  Google Scholar 

  • Luca L, Pricopie A, Barbu M, Ifrim G, Caraman S (2019) Control strategies of phosphorus removal in wastewater treatment plants. In 23rd International Conference on System Theory, Control and Computing (ICSTCC) pp.236-241 IEEE. https://doi.org/10.1109/ICSTCC.2019.8886023

  • Lindberg CF (1997) Control and estimation strategies applied to the activated sludge process. Ph.D Thesis, Department of Systems and Control, Uppsala University, Sweden

  • Olsson G, Newell B (1999) Wastewater treatment systems: modelling, diagnosis and control. IWA Publishing, London, UK

  • Maciejowski JM (2002) Predictive control with constraints, 1st edn. Pearson Education, Harlow

    Google Scholar 

  • Rieger L, Koch G, Kühni M, Gujer W, Siegrist H (2001) The EAWAG bio-P module for activated sludge model no. 3. Water Res 35(16):3887–3903. https://doi.org/10.1016/S0043-1354(01)00110-5

    Article  CAS  Google Scholar 

  • Shen T, Shi H, Shi H, Jinh H, Xiong H (2011) Feedforward control for nitrogen removal in a pilot-scale anaerobic-anoxic-oxic plant for municipal wastewater treatment. Front Environ Sci Eng China 5(1):130–139. https://doi.org/10.1007/s11783-010-0266-2

    Article  CAS  Google Scholar 

  • Solon K (2015) Activated sludge model no. 3 with bioP module (ASM bioP) implemented within the benchmark simulation model no.1, Technical Report. Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Lund University, Sweden

    Google Scholar 

  • Takács I, Patry GG, Nolasco D (1991) A dynamic model of the clarification-thickening process. Water Res 25(10):1263–1271. https://doi.org/10.1016/0043-1354(91)90066-Y

    Article  Google Scholar 

  • Vrecko D, Hvala N, Stare A, Burica O, Stražar M, Levstek M, Podbevšek S (2006) Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers. Water Sci Technol 53(4-5):125–132. https://doi.org/10.2166/wst.2006.098

    Article  CAS  Google Scholar 

  • Vrečko D, Nadja H, Stražar M (2011) The application of model predictive control of ammonia nitrogen in an activated sludge process. Water Sci Technol 64(5):1115–1121. https://doi.org/10.2166/wst.2011.477

    Article  CAS  Google Scholar 

  • Wu J (2017) Comparison of control strategies for single-stage partial nitrification-anammox granular sludge reactor for mainstream sewage treatment-a model-based evaluation. Environ Sci Pollut Res 24:25839–25848. https://doi.org/10.1007/s11356-017-0230-9

    Article  CAS  Google Scholar 

  • Xie WM, Zeng RJ, Li WW, Wang GX, Zhang LM (2018) A modeling understanding on the phosphorous removal performances of a 2 O and reversed a 2 O processes in a full-scale wastewater treatment plant. Environ Sci Pollut Res 25(23):22810–22817. https://doi.org/10.1007/s11356-018-2317-3

    Article  CAS  Google Scholar 

  • Xu H, Vilanova R (2013) Comparison of control strategies on combined biological phosphorus and nitrogen removal wastewater treatment process. Conference on System Theory, Control and Computing (ICSTCC) pp. 595–600 IEEE. https://doi.org/10.1109/ICSTCC.2013.6689024

  • Xu H, Vilanova R (2015a) PI and fuzzy control for P-removal in wastewater treatment plant. Int J Comput Commun Control 10(6):176–191. https://doi.org/10.15837/ijccc.2015.6.2081

    Article  Google Scholar 

  • Xu H, Vilanova R (2015b) Application of fuzzy control on wastewater treatment plant for P-removal. Mediterranean Conference on Control and Automation (MED) pp. 545-550 https://doi.org/10.1109/MED.2015.7158804

  • Yuan Z, Oehmen A, Ingildsen P (2002) Control of nitrate recirculation flow in predenitrification systems. Water Sci Technol 45:29–36. https://doi.org/10.2166/wst.2002.0544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Kimberly Solon, Environmental Science and Modeling Division, Ghent University, Belgium, is acknowledged for sending the ASM3bioP Matlab/Simulink codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshagiri Rao Ambati.

Additional information

Responsible editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiek, A.G., Machavolu, V.R.K., Seepana, M.M. et al. Design of control strategies for nutrient removal in a biological wastewater treatment process. Environ Sci Pollut Res 28, 12092–12106 (2021). https://doi.org/10.1007/s11356-020-09347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09347-2

Keywords

Navigation