Skip to main content

Modelling and Control of Wastewater Treatment Processes: An Overview and Recent Trends

  • Chapter
  • First Online:
Water and Wastewater Management

Part of the book series: Water and Wastewater Management ((WWWE))

Abstract

In this study, some modelling and process control approaches used in Wastewater Treatment Plants (WWTP) are recalled. Two principal kinds of WWTP are used as frameworks: continuous anaerobic and aerobic. The highly nonlinear nature of the system models representing such processes is highlighted. In addition, parametric uncertainties that characterize them, and disturbances to which they are subject and that affect their performance are also underlined. Thus, mention is made of how various modelling and process control techniques have been used to face such issues in different ways. Typical deterministic models proposed by the International Water Association (IWA) are recalled, but some useful simpler models and even knowledge-based ones, like neural networks and fuzzy approaches, are also mentioned for specific applications. Particular emphasis is placed on the main parameters and variables to be monitored and controlled in order to ensure the optimal performance of WWTP: In the case of anaerobic digestion, alkalinity, and in the case of aerobic processes oxygen transfer efficiency. Thus, unlike classical Proportional Integral Derivative (PID) controllers, two kinds of nonlinear control approaches, namely adaptive and predictive, which are robust against uncertainties, nonlinearities, and perturbations are cited as the most used in this kind of process. Finally, some implications are highlighted in terms of energy consumption and cost optimization, and how different control strategies in the frame of benchmarking are used to minimize their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sari T, Wade MJ. Generalised approach to modelling a three-tiered microbial food-web. Math Biosci. Epub ahead of print 2017. https://doi.org/10.1016/j.mbs.2017.07.005.

  2. Henze M, Gujer W, Mino T, et al. Activated sludge models ASM1, ASM2, ASM2d and ASM3. 1st ed. London: IWA Publishing; 2000.

    Google Scholar 

  3. Jimenez J, Latrille E, Harmand J, et al. Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Rev Environ Sci Biotechnol. 2015;14:615–48.

    Article  Google Scholar 

  4. Jetten MSM, Strous M, Van De Pas-Schoonen KT et al. The anaerobic oxidation of ammonium. FEMS Microbiol Rev. Epub ahead of print 1998. https://doi.org/10.1016/S0168-6445(98)00023-0.

  5. Marais GR, Ekama GA, Wentzel MC. Application of the activated sludge model to aerated lagoons. Water SA. 2017;43:238–57.

    Article  CAS  Google Scholar 

  6. Chong S, Sen TK, Kayaalp A, et al. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a state-of-the-art review. Water Res. 2012;46:3434–70.

    Article  CAS  Google Scholar 

  7. Guo XM, Trably E, Latrille E et al Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy. Epub ahead of print 2010. https://doi.org/10.1016/j.ijhydene.2010.03.008.

  8. Zhang R, El-Mashad HM, Hartman K et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol. Epub ahead of print 2007. https://doi.org/10.1016/j.biortech.2006.02.039.

  9. Chan YJ, Chong MF, Law CL et al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem Eng J. 2009;1–18.

    Google Scholar 

  10. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresour Technol. 2009;100:5478–84.

    Article  CAS  Google Scholar 

  11. Mao C, Feng Y, Wang X, et al. Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev. Epub ahead of print 2015. https://doi.org/10.1016/j.rser.2015.02.032.

  12. Donoso-Bravo A, Mailier J, Martin C, et al. Model selection, identification and validation in anaerobic digestion: a review. Water Res. 2011;45:5347–64.

    Article  CAS  Google Scholar 

  13. Delbès C, Moletta R, Godon JJ. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol. 2001;35:19–26.

    Article  Google Scholar 

  14. Batstone DJ, Keller J, Angelidaki I, et al. The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol. 2002;45:65–73.

    Article  CAS  Google Scholar 

  15. Hauduc H, Rieger L, Takács I, et al. A systematic approach for model verification: application on seven published activated sludge models. Water Sci Technol. 2010;61:825–39.

    Article  CAS  Google Scholar 

  16. Hauduc H, Rieger L, Oehmen A, et al. Critical review of activated sludge modeling: State of process knowledge, modeling concepts, and limitations. Biotechnol Bioeng. 2013;110:24–46.

    Article  CAS  Google Scholar 

  17. Sin G, De Pauw DJW, Weijers S, et al. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol Bioeng. 2008;100:516–28.

    Article  CAS  Google Scholar 

  18. Keskitalo J, Leiviskä K. Application of evolutionary optimisers in data-based calibration of activated sludge models. Expert Syst Appl. 2012;39:6609–17.

    Article  Google Scholar 

  19. Alikhani J, Takacs I, Al-Omari A, et al. Evaluation of the information content of long-term wastewater characteristics data in relation to activated sludge model parameters. Water Sci Technol. 2017;75:1370–89.

    Article  CAS  Google Scholar 

  20. Fortela DLB, Farmer K, Zappi A et al. A methodology for global sensitivity analysis of activated sludge models: case study with activated sludge model no. 3 (ASM3). Water Environ Res. 2019;91:865–876.

    Google Scholar 

  21. Angelidaki I, Boe K, Ellegaard L. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol. 2005;52:189–94.

    Article  CAS  Google Scholar 

  22. Méndez-Acosta HO, Palacios-Ruiz B, Alcaraz-González V, et al. A robust control scheme to improve the stability of anaerobic digestion processes. J Process Control. 2010;20:375–83.

    Article  Google Scholar 

  23. Batstone DJ, Amerlinck Y, Ekama G, et al. Towards a generalized physicochemical framework. Water Sci Technol. 2012;66:1147–61.

    Article  CAS  Google Scholar 

  24. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99:4044–64.

    Article  CAS  Google Scholar 

  25. Chen S, Zhang J, Wang X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag Res. 2015;33:1033–40.

    Article  CAS  Google Scholar 

  26. Patón M, González-Cabaleiro R, Rodríguez J. Activity corrections are required for accurate anaerobic digestion modelling. Water Sci Technol. 2018;77:2057–67.

    Article  Google Scholar 

  27. Zhang Y, Piccard S, Zhou W. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions. Bioresour Technol. 2015;196:279–89.

    Article  CAS  Google Scholar 

  28. Shi E, Li J, Leu SY, et al. Modeling the dynamic volatile fatty acids profiles with pH and hydraulic retention time in an anaerobic baffled reactor during the startup period. Bioresour Technol. 2016;222:49–58.

    Article  CAS  Google Scholar 

  29. Montiel-Escobar JL, Alcaraz-González V, Méndez-Acosta HO et al. ADM1-based robust interval observer for anaerobic digestion processes. Clean Soil Air Water. 40. Epub ahead of print 2012. https://doi.org/10.1002/clen.201100718.

  30. Torres Zúñiga I, Villa-Leyva A, Vargas A et al. Experimental validation of online monitoring and optimization strategies applied to a biohydrogen production dark fermenter. Chem Eng Sci. Epub ahead of print 2018. https://doi.org/10.1016/j.ces.2018.05.039.

  31. Xue L, Li D, Xi Y. Nonlinear model predictive control of anaerobic digestion process based on reduced ADM1. In: 2015 10th Asian control conference emerging control techniques for a sustainable world, ASCC 2015. https://doi.org/10.1109/ASCC.2015.7244539.

  32. Hassam S, Ficara E, Leva A et al. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model no. 1 (ADM1). Biochem Eng J. 2015;99. https://doi.org/10.1016/j.bej.2015.03.007.

  33. Bernard O, Hadj-Sadok Z, Dochain D, et al. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng. 2001;75:424–38.

    Article  CAS  Google Scholar 

  34. Hassam S, Ficara E, Leva A et al. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model no. 1 (ADM1). Biochem Eng J. 2015;99:193–203.

    Google Scholar 

  35. Attar S, Haugen FA. Model-based optimal recovery of methane production in an anaerobic digestion reactor. Model Identif Control. 2020;41:121–8.

    Article  Google Scholar 

  36. Bernard O, Chachuat B, Hélias A, et al. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Sci Technol. 2005;52:457–64.

    Article  CAS  Google Scholar 

  37. Didi I, Dib H, Cherki B. A Luenberger-type observer for the AM2 model. J Process Control. 2015;32:117–26.

    Article  CAS  Google Scholar 

  38. Rodríguez A, Quiroz G, Femat R, et al. An adaptive observer for operation monitoring of anaerobic digestion wastewater treatment. Chem Eng J. 2015;269:186–93.

    Article  Google Scholar 

  39. Vargas A, Sepúlveda-Gálvez A, Barrios-Pérez JD. A fast extremum-seeking approach for the methanisation of organic waste in an anaerobic bioreactor. IFAC-PapersOnLine. 2019;52:269–74.

    Article  Google Scholar 

  40. Hmissi M, Harmand J, Alcaraz-Gonzalez V et al. Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. Water Sci Technol. 77. Epub ahead of print 2018. https://doi.org/10.2166/wst.2017.612.

  41. García-Sandoval JP, Méndez-Acosta HO, González-Alvarez V et al. VFA robust control of an anaerobic digestion pilot plant: experimental implementation. IFAC-PapersOnLine. 49. Epub ahead of print 2016. https://doi.org/10.1016/j.ifacol.2016.07.328.

  42. Alcaraz-González V, Fregoso-Sanchez FA, Mendez-Acosta HO, et al. Robust regulation of alkalinity in highly uncertain continuous anaerobic digestion processes. Clean: Soil, Air, Water. 2013;41:1157–64.

    Google Scholar 

  43. Alcaraz-González V, Harmand J, Rapaport A, et al. Robust interval-based regulation for anaerobic digestion processes. Water Sci Technol. 2005;52:449–56.

    Article  Google Scholar 

  44. Méndez-Acosta HO, Palacios-Ruiz B, Alcaraz-González V, et al. Robust control of volatile fatty acids in anaerobic digestion processes. Ind Eng Chem Res. 2008;47:7715–20.

    Article  Google Scholar 

  45. Flores-Estrella RA, Alcaraz-González V, García-Sandoval JP et al. Robust output disturbance rejection control for anaerobic digestion processes. J Process Control. 75. Epub ahead of print 2019. https://doi.org/10.1016/j.jprocont.2018.12.012.

  46. Georgieva P, Ilchmann A. Adaptive λ-tracking control of activated sludge processes. Int J Control. 2001;74:1247–59.

    Article  Google Scholar 

  47. Leu S-Y, Rosso D, Larson LE, et al. Real-time aeration efficiency monitoring in the activated sludge process and methods to reduce energy consumption and operating costs. Water Environ Res. 2009;81:2471–81.

    Article  CAS  Google Scholar 

  48. Åmand L, Carlsson B. Optimal aeration control in a nitrifying activated sludge process. Water Res. 2012;46:2101–10.

    Article  Google Scholar 

  49. Füreder K, Svardal K, Frey W, et al. Energy consumption of agitators in activated sludge tanks—actual state and optimization potential. Water Sci Technol. 2018;77:800–8.

    Article  Google Scholar 

  50. Shen W, Chen X, Corriou JP. Application of model predictive control to the BSM1 benchmark of wastewater treatment process. Comput Chem Eng. 2008;32:2849–56.

    Article  CAS  Google Scholar 

  51. Belchior CAC, Araújo RAM, Landeck JAC. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Comput Chem Eng. 2012;37:152–62.

    Article  CAS  Google Scholar 

  52. Sedlak RI. Phosphorus and nitrogen removal from municipal wastewater. Principles and practice, 2nd ed. CRC Press, Taylor & Francis Group; 1991.

    Google Scholar 

  53. Stare A, Vrečko D, Hvala N, et al. Control of nutrient removing activated sludge system. IFAC Proc. 2007;40:61–6.

    Article  Google Scholar 

  54. Rieger L, Takács I, Siegrist H. Improving nutrient removal while reducing energy use at three Swiss WWTPs using advanced control. Water Environ Res. 2012;84:170–88.

    Article  CAS  Google Scholar 

  55. Steffens MA, Lant PA. Multivariable control of nutrient-removing activated sludge systems. Water Res. 1999;33:2864–78.

    Article  CAS  Google Scholar 

  56. Zhang M, Peng Y, Wang C, et al. Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process. Biochem Eng J. 2016;106:26–36.

    Article  Google Scholar 

  57. Samuelsson P, Halvarsson B, Carlsson B. Cost-efficient operation of a denitrifying activated sludge process. Water Res. 2007;41:2325–32.

    Article  CAS  Google Scholar 

  58. Chen W, Yao C, Lu X. Optimal design activated sludge process by means of multi-objective optimization: case study in benchmark simulation model 1 (BSM1). Water Sci Technol. 2014;69:2052–8.

    Article  CAS  Google Scholar 

  59. Gernaey KV, Jeppsson U, Vanrolleghem PA et al. Benchmarking of control strategies for wastewater treatment plants IWA task group on benchmarking of control strategies for wastewater treatment plants.

    Google Scholar 

  60. Wang X, Bai X, Li Z, et al. Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system. Biochem Eng J. 2018;140:85–92.

    Article  CAS  Google Scholar 

  61. Barampouti EMP, Mai ST, Vlyssides AG. Dynamic modeling of the ratio volatile fatty acids: bicarbonate alkalinity in a UASB reactor for potato processing wastewater treatment. Environ Monit Assess. 2005;110:121–8.

    Article  CAS  Google Scholar 

  62. Holubar P, Zani L, Hager M, et al. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Res. 2002;36:2582–8.

    Article  CAS  Google Scholar 

  63. Lardon L, Punal A, Steyer JP. On-line diagnosis and uncertainty management using evidence theory—experimental illustration to anaerobic digestion processes. J Process Control. 2004;14:747–63.

    Article  CAS  Google Scholar 

  64. Djatkov D, Effenberger M, Martinov M. Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems. Appl Energy. 2014;134:163–75.

    Article  Google Scholar 

  65. Kusiak A, Wei X. Optimization of the activated sludge process. J Energy Eng. 2013;139:12–7.

    Article  Google Scholar 

  66. Du X, Wang J, Jegatheesan V et al. Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Appl Sci (Switzerland). 8. Epub ahead of print 2018. https://doi.org/10.3390/app8020261.

  67. Jaramillo-Morán MA, Peguero-chamizo JC. Sliding mode control of a wastewater plant with. 2007;120–129.

    Google Scholar 

  68. Han H, Wu X, Qiao J. A self-organizing sliding-mode controller for wastewater treatment processes. IEEE Trans Control Syst Technol. 2019;27:1480–91.

    Article  Google Scholar 

  69. Zlateva P. Sliding mode control of wastewater treatment process with activated sludge under extreme weather events. IOP Conf Ser Earth Environ Sci. 2021;776:012001.

    Google Scholar 

Download references

Acknowledgements

This publication is an output of the global collaborative project “EXCEED—Swindon—Sustainable Water Management in Developing Countries”. The author highly acknowledge the support of German Academic Exchange Service DAAD for taking part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Alcaraz-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcaraz-Gonzalez, V. (2022). Modelling and Control of Wastewater Treatment Processes: An Overview and Recent Trends. In: Bahadir, M., Haarstrick, A. (eds) Water and Wastewater Management. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-030-95288-4_12

Download citation

Publish with us

Policies and ethics