Skip to main content

Advertisement

Log in

Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Feeding 9 billion by 2050 is one of major challenges for researchers. Use of diversified crops, nonconventional water resources and rehabilitation of marginal lands are alternate options to produce more food to face climate change projections. Adaptation to climate change through climate smart agriculture practices, agroecology activities, and crop-based management packages can help transform the marginal lands from environmental burdens into productive and economic blocks. This review discusses the recent advancements on specialty group of alternate crops (oil seeds, legumes, cereals, medicinal, lignocellulose, and fruit crops) which can adapt in the marginal environments. Availability of alternate water resources (saline water, treated wastewater) for irrigation cannot be omitted. Crop diversification systems involving drought and salt-tolerant crops are likely to be the key to future agricultural and economic growth in the regions where salt-affected soils exist and/or saline aquifers are pumped for irrigation. These systems may tackle three main tasks: sustainable management of land resources and enhancement of per unit productivity; intensification of agroecological practices to increase soil fertility; and improving productivity of marginal lands for diversified climate smart crops. This review explores various aspects of marginal lands and selection of tolerant crop genotypes, crop diversification, and agroecological practices to maximize benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraha MT, Shimelis H, Laing M, Assefa K (2016) Performance of tef [Eragrostistef (Zucc.) Trotter] genotypes for yield and yield components under drought-stressed and non-stressed conditions. Crop Sci 56(4):1799–1806

    CAS  Google Scholar 

  • Accomando S, Cataldo F (2004) The global village of celiac disease. Dig Liver Dis 36(7):492–498

    CAS  Google Scholar 

  • Agarwal S, Kumar A, Singh PK (2016) Influence of saline water irrigation on crude protein and amino acids in two genotypes of finger millet (Eleusine coracana Gaertn.). Int J Agric Sci Res 6:261–268

    Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during Anthesis in Tibetan Wild and Cultivated Barleys. PLoS ONE 8(10):e77869. https://doi.org/10.1371/journal.pone.0077869

    Article  CAS  Google Scholar 

  • Akbarian A, Arzani A, Salehi M, Salehi M (2011) Evaluation of triticale genotypes for terminal drought tolerance using physiological traits. Indian J Agric Sci 81(12):1110–1115

    Google Scholar 

  • Akgun I, Kara B, Altindal D (2011) Effect of salinity (NaCl) on germination, seedling growth and nutrient uptake of different triticale genotypes. Turkish J Field Crops 16(2):225–232

    Google Scholar 

  • Al Kharusi L, Assaha DV, Al-Yahyai R, Yaish MW (2017) Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests 8(4):136

    Google Scholar 

  • Al-Dakheel AJ, Hussain MI (2015) Saving fresh water resources through cultivation of salt-tolerant forage grasses: seasonal and genotypic variations. Biosalinity News 16:10–12

    Google Scholar 

  • Al-Dakheel AJ, Hussain MI (2016) Genotypic variation for salinity tolerance in Cenchrus ciliaris L. Front Plant Sci 7:1090

    Google Scholar 

  • Al-Dakheel AJ, Fraj MB, Shabbir GM, Al Gailani AQM (2012) Evaluation of Batini barley landraces from Oman and breeding lines under various irrigation salinity levels. Agric Sci Res J 2:42–50

    Google Scholar 

  • Al-Dakheel AJ, Hussain MI, Abdul Rehman AQM (2015) Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agricultural Water Management 159:148–154. https://doi.org/10.1016/j.agwat.2015.06.014

    Article  Google Scholar 

  • Alemayehu FR, Bendevis MA, Jacobsen SE (2015a) The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci 201:321–329. https://doi.org/10.1111/jac.12108

    Article  CAS  Google Scholar 

  • Alemayehu FR, Bendevis MA, Jacobsen SE (2015b) The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci 201:321–329. https://doi.org/10.1111/jac.12108

    Article  CAS  Google Scholar 

  • Aljuburi HJ (1992) Effect of sodium chloride on seedling growth of four date palm varieties. Ann Arid Zone 31(4):259–262

    Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2008) The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Res J Environ Sci 2(4):298–304

    Google Scholar 

  • Al-Naggar AMM, Badran AEE, El-Moghazi Mai MA (2017) Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J Adv Agric Res 3(1):1–15

    Google Scholar 

  • Alrasbi SARN, Hussain, Schmeisky H (2010) Evaluation of the growth of date palm seedlings irrigated with saline water in the Sultanate of Oman, ISHS Acta Horticulturae. 882: IV, International Date Palm Conference

  • Altieri M (2004) Linking ecologists and traditional farmers in search for sustainable agriculture. Front. Ecol. Environ 2:35–42.

  • Altieri MA, Koohafkan P (2013) Strengthening resilience of farming systems: a key prerequisite for sustainable agricultural production. Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate. UNCTAD, TER13 Report, Geneva

  • Al-Dabbas MM, Ahmad RAFAT, Ajo RY, Abulaila KHALED, Akash MUHANAD, Al-Ismail KHALID (2010) Chemical composition and oil components in seeds of Moringa peregrina (Forssk) Fiori. Crop Res 40(1):2

  • Al-Kahtani HA (1995) Moringa peregrina (Al-Yassar or Al-Ban) seeds oil from Northwest Saudi Arabia. J King Saud Univ, 1, 31–45

  • Al-Suhaibani NA (2009) Influence of early water deficit on seed yield and quality of faba bean under arid environment of Saudi Arabia. Am-Eurasian J Agric Environ Sci 5(5):649–654

    CAS  Google Scholar 

  • Al-Wali BR, Kurup SS, Alhammadi MS (2011) Response of Tissue Culture Plantlets of Date Palm (Phoenix dactylifera L) var. Khalas to Moisture Stress under the UAE Condition. M.Sc. Thesis, UAE University, Al-Ain

  • Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing-a review. Emirates J Food Agric 25:501–508. https://doi.org/10.9755/ejfa.v25i7.12045

    Article  Google Scholar 

  • Andini R, Yoshida S, Ohsawa R (2013) Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of amaranths. Agronomy 3:391–403. https://doi.org/10.3390/agronomy3020391

    Article  CAS  Google Scholar 

  • Anwar F, Rashid U (2007) Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 39:1443–1453.

  • Arendt EK, Zannini E (2013) Teff. Cereal grains for the food and beverage industries. 351–369e. https://doi.org/10.1533/9780857098924.351

  • Arshadullah M, Malik MA, Rasheed M, Jilani G, Zahoor F, Kaleem S (2011) Seasonal and genotypic variations influence the biomass and nutritional ingredients of Cenchrus ciliaris grass forage. Int J Agric Biol 13:120–124

    Google Scholar 

  • Asfaw KG, Dano FI (2011) Effects of salinity on yield and yield components of tef [Eragrostistef (Zucc.) Trotter] accessions and varieties. Curr Res J Biol Sci 3:289–299

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Assefa Y, Staggenborg SA (2010) Grain sorghum yield with hybrid advancement and changes in agronomic practices from 1957 through 2008. Agron J 102:703–706. https://doi.org/10.2134/agronj2009.0314 https://www.agronomy.org/publications/aj/articles/102/2/703

    Article  Google Scholar 

  • Assefa Y, Staggenborg SA, Prasad VPV (2010) Grain sorghum water requirement and responses to drought stress: a review. Crop Management 9. https://doi.org/10.1094/CM-2010-1109-01-RV

  • Atabani AE, Mahlia TMI, Masjuki HH, et al. (2013) A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and nonedible oils and study on the effect of biodiesel blending. Energy 58:296–304

  • Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65(9):1199–1221

    CAS  Google Scholar 

  • Ayele M, Blum A, Nguyen HT (2001) Diversity for osmotic adjustment and root depth in TEF [Eragrostistef (Zucc) Trotter]. Euphytica 121:237–249. https://doi.org/10.1023/A:1012099914738

    Article  Google Scholar 

  • Ayerza R (2011) Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) growing in the Arid Chaco of Argentina. Industrial Crops and Products 33:389-394

  • Aymen EM, Zhani K, Meriem BF, Hannachi C (2012) Seed priming for better growth and yield of safflower (Carthamus tinctorius) under saline condition. J Stress Physiol Biochem 8(3):135–143

    Google Scholar 

  • Ayodele VI (1999) Influence of soil water stress at different physiological stages on growth and seed yield of Amaranthus species. In III International Symposium on Irrigation of Horticultural Crops 537 (pp. 767-772)

  • Ayres RS, Westcott DW (1976) Water quality for agriculture. In: Irrigation and Drainage Paper 29. Rome, FAO

    Google Scholar 

  • Bafeel SO (2014) Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin. Saudi J Biol Sci 21:300–304

    CAS  Google Scholar 

  • Baginsky C, Arenas J, Escobar H, Garrido M, Valero N, Tello D, Pizarro L, Valenzuela A, Morales L, Silva H (2016) Growth and yield of chia (Salvia hispanica L.) in the Mediterranean and desert climates of Chile. Chilean J Agric Res 76(3):255–264

    Google Scholar 

  • Balole TV, Legwaila GM (2006) Sorghum bicolor (L.) Moench. Record from Protabase. Brink M. & Belay G. (edts). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands.

  • Bande Y, Adam N, Azmi Y, Jamarei O (2012) Determination of selected physical properties of egusi melon (Citrullus lanatus) seeds. J Basic Appl Sci 8:257–265

    Google Scholar 

  • Barba de la Rosa AP, Fomsgaard IS, Laursen B, Mortensen AG, Olvera-Martínez L, Silva-Sánchez C, De León-Rodríguez A (2009) Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. J Cereal Sci 49(1):117–121. https://doi.org/10.1016/j.jcs.2008.07.012

    Article  CAS  Google Scholar 

  • Baricevic D, Bartol T (2000) The biological/pharmacological activity of Salvia genus V., Pharmacology. In: Kintzois SE (ed) Sage: The Genus Salvia. Harwood Academic Publishers, Abingdon Marston, pp 143–184

    Google Scholar 

  • Bassil ES, Kaffka SR (2002) Respones of safflower (Carthamus tinctorius L.) to saline soil and irrigation II. Crop response to salinity. Agric Water Manag 54:81–92

    Google Scholar 

  • Bazile D, Bertero D, Nieto C. 2015a. State of the Art report on Quinoa around the World in 2013. Rome: Food and Agriculture Organization of the United Nations (FAO) & CIRAD (Centredecoopérationinternationale en rechercheagronomiquepourledéveloppement).

  • Bazile D, Bertero D, Nieto C (2015b) State of the Art report on Quinoa around the World in 2013. Rome: Food and Agriculture Organization of the United Nations (FAO) & CIRAD (Centredecoopérationinternationaleenrechercheagronomiquepourledéveloppement)

  • Behboudian MH, Ma Q, Turner NC, Palta JA (2001) Reactions of chickpea to water stress: yield and seed composition. J Sci Food Agric 81(13):1288–1291. https://doi.org/10.1002/jsfa.939

    Article  CAS  Google Scholar 

  • Belko N, Cisse N, Diop NN, Zombre G, Thiaw S, Muranaka S, Ehlers J (2014) Selection for postflowering drought resistance in short-and medium-duration cowpeas using stress tolerance indices. Crop Sci 54:25–33

    Google Scholar 

  • Bhargava A, Shukla S, Rajan S, Ohri D (2007a) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crop Res 101:104–116. https://doi.org/10.1007/s10722-005-3011-0

    Article  Google Scholar 

  • Bhargava A, Shukla S, Rajan S, Ohri D (2007b) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crop Res 101:104–116. https://doi.org/10.1007/s10722-005-3011-0

    Article  Google Scholar 

  • Bianchi FIJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727. https://doi.org/10.1098/rspb.2006.3530

    Article  CAS  Google Scholar 

  • Bochicchio R, Philips TD, Lovelli S, Labella R, Galgano F, Di Marisco A, Amato M (2015) Innovative crop productions for healthy food: the case of chia (Salvia hispanica L.). In A. Vastola (Ed.), The sustainability of agro-food and natural resource systems in the Mediterranean Basin (pp. 29 45). Springer International Publishing

  • Brewbaker JL (2003) Corn Production in the tropics - The Hawaii Experience. College of Tropical Agriculture and Human Resources University of Hawaii at Manoa

  • Cabell JF, Oelofse M (2012) An indicator framework for assessing agroecosystem resilience. Ecol Soc 17(1)

  • Cahill JP (2003) Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ Bot 57:604–618

    Google Scholar 

  • Camas N, Cirak C, Esendal E (2007) Seed yield, oil content and fatty acids composition of safflower (Carthamus tinctorius L.) grown in northern Turkey conditions. Anadolu Tarım Bilim Derg 22:98–104

    Google Scholar 

  • Cannarozzi G, Plaza-Wuthrich S, Esfeld K, Larti S, Wilson YS, Girma D et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostistef). BMC Genomics 15:581. https://doi.org/10.1186/1471-2164-15-581

    Article  Google Scholar 

  • Chandel G, Kumar M, Dubey M, Kumar M (2014) Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr Sci 107(7):1109–1111

    Google Scholar 

  • Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3:144–158

    CAS  Google Scholar 

  • Changmei S, Dorothy J (2014) Millet-the frugal grain. Int J Sci Res Rev 3:75–90

    Google Scholar 

  • Chappell MJ, LaValle LA (2011) Food security and biodiversity: can we have both? Agric Hum Values 23:3–26. https://doi.org/10.1007/S10460-009-9251-4

    Article  Google Scholar 

  • Chaudhari PP, Patel PT, Desai LJ (2009) Effect of nitrogen management on yield, water use and nutrient uptake of grain amaranth (Amaranthus hypochodriacus) under moisture stress. Indian J Agr 54(1):69-73

  • Chauhan BS, Abugho SB (2013) Effect of water stress on the growth and development of Amaranthus spinosus, Leptochloachinensis, and rice. Am J Plant Sci 4(05):989

    Google Scholar 

  • Chauhan JS, Tyagi MK, Kumar A, Nashaat NI, Singh M, Singh NB, Welham SJ (2007) Drought effects on yield and its components in Indian mustard (Brassica juncea L.). Plant Breed 126(4):399–402

    Google Scholar 

  • Chen HT, Liu XQ, Zhang HM, Yuan XX, Gu HP, Cui XY, Chen X (2018) Advances in salinity tolerance of soybean: genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. J Integr Agric 17:2215–2221. https://doi.org/10.1016/S2095-3119(17)61864-1

    Article  CAS  Google Scholar 

  • Clay J (2004) World agriculture and the environment. Island Press, Washington, DC

    Google Scholar 

  • Coates W (2011) Whole and ground chia (Salvia hispanica L.) seeds, chia oil-effects on plasma lipids and fatty acids. In: Patel V, Preedy R, Watson V (eds) Nuts and seeds in health and disease prevention. Academic, San Diego, pp 309–314

    Google Scholar 

  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R (2005a) Tropical forages: an alternative selection tool. CSIRO, DPI&F (Qld), CIAT and ILRI, Brisbane

    Google Scholar 

  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R (2005b) Tropical forages: an alternative selection tool. CSIRO, DPI&F (Qld), CIAT and ILRI, Brisbane

    Google Scholar 

  • Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204

    CAS  Google Scholar 

  • Das IK, Rakshit S (2016) Millets, their importance, and production constraints. Biotic Stress Resistance in Millets:3–19. https://doi.org/10.1016/b978-0-12-804549-7.00001-9

  • DeClerk F, Le Coq JF, Rapidel B, Beer J (2012) Ecosystem services from agriculture and agroforestry. Measurement and Payment. Earthscan, London, Washington DC

  • De Falco B, Fiore A, Bochicchio R, Amato M, Lanzotti V (2018) Metabolomic analysis by UAE-GC MS and antioxidant activity of Salvia hispanica (L.) seeds grown under different irrigation regimes. Ind Crop Prod 112:584–592. https://doi.org/10.1016/j.indcrop.2017.12.030

    Article  CAS  Google Scholar 

  • De Giorgio D, Fornaro F (2004) Tillage systems for a sustainable growth of broad bean (Viciafaba L., major) in a semiarid region of Southern Italy. In: ISCO 2004—13th International Soil Conservation Organization Conference. Conserving Soil and Water for Society: Sharing Solutions. Brisbane, July 2004, (paper no. 934), pp. 1–4

  • De Schutter O (2010) Report submitted by the Special Rapporteur on the right to food. Human Rights Council 16th Session. United Nations General Assembly, United Nations, New York

  • Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51(6):1021–1040

    CAS  Google Scholar 

  • Dost M (2015a) Field evaluation results across locations and identification of suitable quinoa varieties. In: Wrap upWorkshop of Regional Quinoa Project (TCP/RAB/3403–FAO). Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Dost M (2015b) Field evaluation results across locations and identification of suitable quinoa varieties. In: Wrap upWorkshop of Regional Quinoa Project (TCP/RAB/3403–FAO). Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In J. G. Coors & S. Pandey (Eds.), The Genetics and Exploitation of Heterosis in Crops (pp. 19-29). Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Retrieved from http://www.biotechinfo.net/heterosis_duvick1.pdf

  • Dykes L, Rooney LW (2006) Review sorghum and millet phenols and antioxidants. J. Cereal Sci. 44:236-251

  • Ecoport (2010) Ecoport database. http://www.ecoport.org

  • Ejigu A, Asfaw A, Licence P (2010) Moringa stenopetala seed oil as a potential feedstock for biodiesel production in Ethiopia, 316-320

  • El-Jasser ASH (2011) Chemical and biological properties of local cowpea seed protein grown in Gizan region. International Scholarly and Scientific Research & Innovations 5:68–75

    Google Scholar 

  • Ellmer F (2008) Soil organic matter of a sandy soil influenced by agronomy and climate

  • Elshibli S, Korpelainen H (2008a) Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genet 134:251–260

    CAS  Google Scholar 

  • Elshibli S, Korpelainen H (2008b) Excess heterozygosity and scarce genetic differentiation in the population of Phoenix dactylifera L: human impact or ecological determinants. Plant Genetic Resources:Characterization and Utilization 7:95–104

    Google Scholar 

  • Estep M, Van Mourik T, Muth P, Guindo D, Parzies H, Koita O, Weltzein E, Bennetzen J (2011) Genetic Diversity of a Parasitic Weed, Striga hermonthica, on Sorghum and Pearl Millet in Mali. Trop Plant Biol 4:2,91–2,98

    Google Scholar 

  • Fageria NK (2011) Growth and mineral nutrition of field crops. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Fahmy AA, Youssef KM, El Shae HM (2010) Intake and nutritive value of some salt-tolerant fodder grasses for sheep under saline conditions of South Sinai, Egypt. Small Rumin Res 91:110–115. https://doi.org/10.1016/j.smallrumres.2009.11.023

    Article  Google Scholar 

  • FAO (2001) The State of Food Insecurity in the World. FAO, Rome

    Google Scholar 

  • FAO (2003) Food and Agriculture Organization. http://apps.fao.org

  • FAO (2009) The State of Food Insecurity in the World. FAO, Rome, Rome

    Google Scholar 

  • FAO (2011a) Why Has Africa Become a Net Food Importer? Explaining Africa Agricultural and Food Trade Deficits. Trade and markets division, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2011b) The State of Food Insecurity of the World: How does international price volatility affect domestic economies and food security? FAO, WFP, IFAD, Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization) (2003) http://apps.fao.org.

  • FAOSTAT (2012) Available from FAOSTAT Web site:http://faostat.fao.org/

  • FAOSTAT F (2014) Food and Agriculture Organization statistical database

  • Flowers TJ, Gracia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Srinivasan S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    CAS  Google Scholar 

  • Fraj MB, Al-Dakheel AJ, McCann IR, Shabbir GM, Rumman GA, Al Gailani AM (2013a) Selection of high yielding and stable safflower (Carthamus tinctorius L.) genotypes under salinity stress. Agric Sci Res J 3:273–283

    Google Scholar 

  • Fraj MB, Al-Dakheel AJ, McCann IR, Shabbir GM, Rumman GA, Al GA (2013b) Selection of high yielding and stable safflower (Carthamus tinctorius L.) genotypes under salinity stress. Agric Sci Res J 3:273–283

    Google Scholar 

  • Fraj MB, Al-Dakheel AJ, McCann IR, Shabbir GM, Rumman GA, Al Gailani AM (2013c) Selection of high yielding and stable safflower (Carthamustinctorius L.) genotypes under salinity stress. Agric Sci Res J 3:273–283

    Google Scholar 

  • Francois LE, Bernstein L (1964) Salt tolerance of safflower. Agron J 56:38–40

    CAS  Google Scholar 

  • Frederick JR, Camp CR, Bauer PJ (2001) Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci 41(3):759–763

    Google Scholar 

  • French RJ (1998) Effect of early water deficit on growth and development of faba bean. Proceeding of the Australian Agronomy Conference. (C.F. http://www.regional.org.au/au/asa)

  • Furr JR, Ream CL (1968) Salinity effects on growth and salt uptake of seedlings of the date, Phoenix dactylifera L. Proc Amer Soc Hort Sci 92:268–273

    Google Scholar 

  • Garí JA (2002) Review of the African millet diversity. International workshop on fonio, food security and livelihood among the rural poor in West Africa. IPGRI/IFAD, Bamako, Mali, 19-22 November 2001

  • Gill RK, Sharma AD, Singh P, Bhulla SS (2001) Effect of various abiotic stresses on the growth, soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulg J Plant Physiol 27(1–2):72–84

    CAS  Google Scholar 

  • Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crop Res 33(4):399–409

    Google Scholar 

  • González A, Ayerbe L (2010) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172(3):341–349

    Google Scholar 

  • González A, Martı́n, I. and Ayerbe, L. (1999) Barley yield in water-stress conditions.: the influence of precocity, osmotic adjustment and stomatal conductance. Field Crop Res 62(1):23–34

    Google Scholar 

  • González A, Martín I, Ayerbe L (2008) Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. J Agron Crop Sci 194(2):81–91. https://doi.org/10.1111/j.1439-037x.2007.00289.x

    Article  Google Scholar 

  • Gurudeeban S, Ramanathan T (2010) Antidiabetic effect of Citrullus colocynthis in alloxon-induced diabetic rats. Inventi Rapid: Ethno pharmacology 1:112

    Google Scholar 

  • Gurudeeban S, Rajamanickam E, Ramanathan T, Satyavani K (2010) Antimicrobial activity of Citrullus colocynthis in gulf of Mannar. Int J Curr Res 2:78–81

    Google Scholar 

  • Haddadin MF (2015) Assessment of drought tolerant barley varieties under water stress. 5(2):131–137

  • Hammami Z, Gauffreteau A, BelhajFraj M, Sahli A, Jeuffroy MH, Rezgui S, Bergaoui K, McDonnell R, Trifa Y (2017) Predicting yield reduction in improved barley (Hordeum vulgare L.) varieties and landraces under salinity using selected tolerance traits. Field Crop Res 211:10–18

    Google Scholar 

  • Han X, Cheng L, Zhang R, Bi J (2009) Extraction of safflower seed oil by supercritical CO2. J Food Eng 92:370–376

    CAS  Google Scholar 

  • Harada H, Yoshimura Y, Sunaga Y, Hatanaka T (2000) Variations in nitrogen uptake and nitrate-nitrogen concentration among sorghum groups. Soil Sci. Plant Nutr 46:97-104.

  • Harris BN, Sadras VO, Tester M (2010) A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil 336(1-2):377–389

    CAS  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgård B, Kinane J, Jensen ES (2008) Grain legume— cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renewable Agric. Food Syst 23(1):3–12

    Google Scholar 

  • He J, Jin Y, Du YL, Wang T, Turner NC, Yang RP, Siddique KH, Li FM (2017) Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front Plant Sci 8:1499

    Google Scholar 

  • Heuer B, Yaniv Z, Ravina I (2002) Effect of late salinization of chia (Salvia hispanica), stock (Matthiolatricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind Crop Prod 15(163):167

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jelloul A, Jacobsen SE (2014a) Quinoa (Chenopodium quinoa willd.) Seedling, water uptake and yield responses to irrigation water salinity. Acta Hortic 1054:145–152. https://doi.org/10.17660/ActaHortic.2014.1054.16

    Article  Google Scholar 

  • Hirich A, Jelloul A, Choukr-Allah R, Jacobsen SE (2014b) Saline water irrigation of quinoa and chickpea: seedling rate, stomatal conductance and yield responses. J Agron Crop Sci 200(5):378–389

    CAS  Google Scholar 

  • Hithamani G, Srinivasan K (2014) Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chemistry 164:55–62

  • Hojati M, Modarres-Sanavy SAM, Karimi M, Ghanati F (2011) Responses ofgrowth and antioxidant systems in Carthamustinctorius L. under water deficitstress. Acta Physiol Plant 33:105–112

    Google Scholar 

  • Hussain MI, Al-Dakheel AJ (2015) Using alternate water resources for cultivation of salt tolerant perennial grasses under marginal environment. TROPENTAG, Management of Land use systems for enhanced food security-conflicts, controversies and resolutions, Berlin, Germany, September 16–18

  • Hussain MI, Al-Dakheel AJ (2018) Effect of salinity stress on phenotypic plasticity, yield stability, and signature of stable isotopes of carbon and nitrogen in safflower. Environ Sci Pollut Res 25(24):23685–23694. https://doi.org/10.1007/s11356-018-2442-z

    Article  CAS  Google Scholar 

  • Hussain MI, Lyra DA, Nikos N, Farooq M. Ahmad N (2015) Salt and drought stresses in safflower: a review. Agron Sustain Dev 36:1.

  • Hussain MI, Lyra DA, Farooq M, Nikoloudakis N, Khalid N (2016) Salt and drought stresses in safflower: a review. Agron Sustain Dev 36:4

  • Hussain MI, Muscolo A, Farooq M, Ahmad W (2019) Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 221:462–476.

  • ICBA (2013) Biosalinity News. Newsletter for International Center for Biosaline Agriculture 14:3

    Google Scholar 

  • ICBA (2015) ICBA Annual Report 2015. International Center for Biosaline Agriculture, Dubai

    Google Scholar 

  • IPCC (2001) Climate Change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pp

  • IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1132 pp

  • Incekaya Ç, Yazar A (2016) SALTMED model performance for quinoa irrigated with fresh and saline water in a Mediterranean environment. Irrig Drain 65(1):29–37

    Google Scholar 

  • Ishiyaku MF, Aliyu H (2013) Field evaluation of cowpea genotypes for drought tolerance and striga resistance in the dry Savanna of the North-West Nigeria. Int J Plant Breed Genet 7:47–56

    Google Scholar 

  • Istanbulluoglu A (2009) Effects of irrigation regimes on yield and water productivity of safflower (Carthamustinctorius L.) under Mediterranean climatic conditions. Agric Water Manag 96(12):1792–1798

    Google Scholar 

  • Istanbulluoglu A, Gocmen E, Gezer E, Pasa C, Konukcu F (2009) Effects of water stress at different development stages on yield and water productivity of winter and summer safflower (Carthamustinctorius L.). Agric Water Manag 96(10):1429–1434. https://doi.org/10.1016/j.agwat.2009.04.00

    Article  Google Scholar 

  • Jacobsen SE (2003a) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177. https://doi.org/10.1081/FRI-120018883

    Article  Google Scholar 

  • Jacobsen SE (2003b) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177. https://doi.org/10.1081/FRI-120018883

    Article  Google Scholar 

  • Jaradat AA, Shahid M, Al Maskri AY (2004a) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Sci 44:304–315

    Google Scholar 

  • Jaradat AA, Shahid M, Al Maskri AY (2004b) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Science 44:304–315

    Google Scholar 

  • Jensen ES, Peoples MB, Hauggaard-Nielsen H. (2010) Faba bean in cropping systems. Field Crop Res 115(3):203–216. https://doi.org/10.1016/j.fcr.2009.10.008

    Article  Google Scholar 

  • Kamrin MA (1997) Pesticide profiles: toxicity, environmental impact, and fate. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kar G, Kumar A, Martha M (2007a) Water use efficiency and crop coefficients of dry season oilseed crops. Agric Water Manag 87:73–82. https://doi.org/10.1016/j.agwat.2006.06.002

    Article  Google Scholar 

  • Kar G, Kumar A, Martha M (2007b) Water use efficiency and crop coefficients of dry season oilseed crops. Agric Water Manage 87:73–82. https://doi.org/10.1016/j.agwat.2006.06.002

    Article  Google Scholar 

  • Karadge BA, Chavan PD (1983) Physiological studies in salinity tolerance of Sesbania aculeata POIR. Biol Plant 25:412–418. https://doi.org/10.1007/BF02903138

    Article  CAS  Google Scholar 

  • Katerji N, Mastrorilli M, Lahmer FZ, Maalouf F, Oweis T (2011) Faba bean productivity in saline–drought conditions. Eur J Agron 35(1):2–12

    Google Scholar 

  • Kausar A, Ashraf MYM, Niaz M (2014) Some physiological and genetic determinants of salt tolerance in Sorghum (Sorghum Bicolor (L.) Moench): Biomass production and nitrogen metabolism. Pak J Bot 46(2):515–519

    Google Scholar 

  • Kaya MD (2009a) The role of hull in germination and salinity tolerance in some sunflower (Helianthus annuus L.) cultivars. Afr J Biotechnol 8(4):597–600

    CAS  Google Scholar 

  • Kaya MD (2009b) The role of hull in germination and salinity tolerance in some sunflower (Helianthus annuus L.) cultivars. Afr J Biotechnol 8:597–600

    CAS  Google Scholar 

  • Kaydan D, Yagmur M (2008) Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. Afr. J. Biotechnol 7:2862

  • Ketema S (1993) Phenotypic variations in tef (Eragrostistef) germplasm- morphological and agronomic traits. A catalon technical manual No. 6. Institute of Agricultural Research. Addis Ababa, Ethiopia

    Google Scholar 

  • Khalid N, Khan RS, Hussain MI, Farooq M, Ahmad A, Ahmad I (2017) A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-a review. Trends Food Sci Technol 66:176–186

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch. Agron. Soil Sci. 56(1):73–98

  • Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and Striga control for maize and sorghum in Africa. Pest Manag Sci 56(11):957–962

    CAS  Google Scholar 

  • Kijne JW (2005) Towards a strategy for feasible investment in drainage for Aral Sea basin. GRID - Magazine of the IPTRID Network (FAO/United Kingdom), pp 13-15

  • Kothari SL, Kumar S, Vishnoi RK, Kothari A, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88. https://doi.org/10.5511/plantbiotechnology.22.81

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24. https://doi.org/10.1007/s10681-006-9343-9

    Article  Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J. Plant Physiol. 166: 507–520.Kurup S.S., Hedar Y., Al Daheri M., et al. (2009). Morpho-physiological evaluation and RAPD marker assisted characterization of date palm varieties for salinity tolerance. J Food Agric Environ 7:503–507

    Google Scholar 

  • Kumari R, Vishnuvardhan Z, Babu K (2013) A study on effect of NaCl stress on Kodomillet (Paspalum scrobiculatum) during germination stage. Ann. Plant Sci 2:388–394

  • Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. P Natl Acad Sci 105(51):20552-20557

  • Leder I (2004) Sorghum and Millets. Cultivated plants, primarily as food sources. In: Gyargy F (ed) Encyclopedia of life support systems. UNESCO, Eolss Publishers, Oxford

    Google Scholar 

  • Leport L, Turner NC, Davies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24(3):236–246

    Google Scholar 

  • Lirong B, Liran S, Xiaoli G, Xiaona Z. 2016. Effects of water stress on physiological characteristics of different genotypes of triticale and rye seedlings. Crops 2016-04.

  • Lisa LC, Alderman H, Aduayom D (2006) Food insecurity in sub-Saharan Africa: new estimates from household expenditure surveys. Research Report, 146. Volume Research Report. Washington, DC: 146, International Food Policy Research Institute (IFPRI).

  • Liu F, Stützel H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150

    Google Scholar 

  • Liu F, Stützel H (2004a) Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102:15–27. https://doi.org/10.1016/j.scienta.2003.11.014

    Article  Google Scholar 

  • Liu F, Stützel H (2004b) Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102:15–27. https://doi.org/10.1016/j.scienta.2003.11.014

    Article  Google Scholar 

  • Lombani M, Arzani A (2011) Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agron Res 9(1–2):315–329

    Google Scholar 

  • Lovelli S, Perniola M, Ferrara A, Di Tommaso T (2007) Yield response factor towater (Ky) and water use efficiency of Carthamustinctorius L. and Solanum melongena L. Agric. Water Manage 92:73–80

    Google Scholar 

  • Lyu C, Xu Z (2020) Crop production changes and the impact of Grain for Green program in the Loess Plateau of China. J Arid Land:1–11

  • Maas EV (1990) Crop salt tolerance. In: Agricultural Salinity Assessment and Management Ed. K K Tanji, ASCEManuals & Reports on Engineering No. 71, pp. 262–304 ASCE. New York

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural Drainage. ASA-CSSA-SSSA, Madison, pp 55–108

    Google Scholar 

  • Madamba R, Grubben GJH, Asante IK, Akromah R (2006a) Vigna unguiculata (L.) Walp. Record from Protabase. Brink M & Belay G (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands

  • Madamba R, Grubben GJH, Asante IK, Akromah R (2006b) Vigna unguiculata (L.) Walp. Record from Protabase. Brink M & Belay G (Editors). PROTA (Plant Resources of Tropical Africa / Ressourcesvégétales de l’Afriquetropicale), Wageningen, Netherlands

  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): effects of varying NaCl, K?/Na? and NaHCO3 levels on cultivars differing in tolerance. Pak J Bot 43(3):1651–1654

    CAS  Google Scholar 

  • Malash N, Flowers T, Ragab R (2008) Effect of irrigation methods, manage ment and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig.Sci. 26:313–323. https://doi.org/10.1007/s00271-007-0095-7

    Article  Google Scholar 

  • Maleki P, Bahrami HA, Saadat S, Sharifi F, Dehghany F, Salehi M (2018) Salinity threshold value of Quinoa (Chenopodium quinoa Willd.) at various growth stages and the appropriate irrigation method by saline water. Commun Soil Sci Plant Anal 49(15):1815–1825. https://doi.org/10.1080/00103624.2018.1474917

    Article  CAS  Google Scholar 

  • Malik KA, Aslam Z, Naqvi M (1986) Kallar grass: a plant for saline land. Nuclear Institute for Agriculture and Biology, Faisalabad

    Google Scholar 

  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas Agricultural Experiment Station, Texas A&M University System, USA., Pages: 21

  • Mansour E, Abdul-Hamid MI, Yasin MT, Qabil N, Attia A (2017) Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agric Water Manag 194:58–67

    Google Scholar 

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and longterm projections. Int Food Agribus Manag Rev 12:143–161

    Google Scholar 

  • Mathur Y, Poonia M, Pandel U, Singh R (2012) Performance and emission characteristics of diesel engine using low concentration thumba oil diesel blends. Int J Wind Renew Energy 1:108–113

    Google Scholar 

  • Menon K, Sood N, Rao NK (2016) Study of morpho-agronomic diversity and oil content in desert gourd (Citrullus colocynthis (L.) Schrad.). Aust J Crop Sci 10:1000–1006

    Google Scholar 

  • Methu JN, Kiruiro EM, Abat N (2006) Your feed shortage problems. Use maize forage. KARI resource center, Nairobi

  • Meyer LD, Dabney SM, Murphree CE, Harmon WC, Grissinger EH (1999) Crop production systems to control erosion and reduce runoff from upland silty soils. Trans ASAE 42(6):1645–1652

    Google Scholar 

  • Miller PR, Waddington J, McDonald CL, Derksen DA (2002) Cropping sequence affects wheat productivity on the semiarid northern Great Plains. Can J Plant Sci 82:307–318

    Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule Genistein under field conditions. J Plant Nutr 30(12):1967–1992

    CAS  Google Scholar 

  • Modi AT, Mabhaudhi T (2013) Water use and drought tolerance of selected traditional and indigenous crops. Water Research Commision of South Africa: Pretoria, South Africa

  • Movahhedy-Dehnavy M, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A (2009) Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamustinctorius L.) grown under water deficit stress. Ind Crop Prod 30(1):82–92. https://doi.org/10.1016/j.indcrop.2009.02.004

    Article  CAS  Google Scholar 

  • Mposi MS (1999a) Vegetable amaranth improvement for South Africa: a preliminary investigation. The Australian New Crops Newsletter 11:8–14

    Google Scholar 

  • Mposi MS (1999b) Vegetable amaranth improvement for South Africa: a preliminary investigation. Australian New Crops Newslett 11:8–14

    Google Scholar 

  • Mullen CL, Holland JF, Heuke L (2003a) AGFACTS: Cowpea, lablab and pigeon pea. Available online: http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0006/157 488/cowpea-lablab-pigeon-pea.pdf

  • Mullen CL, Holland JF, Heuke L. (2003b) AGFACTS: Cowpea, lablab and pigeon pea. Available online: http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0006/157 488/cowpea-lablab-pigeon-pea.pdf

  • Munns R, Tester M (2008) Mechanismsofsalinitytolerance. AnnuRev PlantBiol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  Google Scholar 

  • Muñoz LA, Cobos A, Diaz O, Aguilera JM (2013) Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev Int 29(394):408

    Google Scholar 

  • Murty MVR, Piara Singh, Wani SP, Khairwal IS, Srinivas K (2007) Yield gap analysis of sorghum and pearl millet in India using simulation modeling. Global Theme on Agroecosystems Report no. 37. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, p 82

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M (2011) Cereal landraces for sustainable agriculture. In Sustainable Agriculture Volume 2 (pp. 147-186). Springer, Dordrecht

  • Nixon DJ, Stephens W, Tyrrel SF, Brierley ED (2001) The potential for short rotation energy forestry on restored landfill caps. Bioresource Technology 77:237–245. https://doi.org/10.1016/S0960-8524(00)00081-X

    Article  CAS  Google Scholar 

  • Nouman W, Basra SMA, Yasmeen A, Gull T, Hussain SB, Zubair M, Gul R (2014) Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regul. 73:267–278

  • O'Donnell NH, Lindberg BM, Neale AD, Hamilla JD, Blomstedt CK, Roslyn MG (2013) Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. Plant Physiol 73:83–92

    CAS  Google Scholar 

  • Omami EN, Hammes PS (2006) Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthusspp.). N Z J Crop Hortic Sci 34(1):33–44

    Google Scholar 

  • Oplinger ES, Oelke EA, Putnam DH, Kelling, KA, Kaminski AR, Teynor TM, Doll JD, Durgan BR (1991) Mustard. In: Alternative Field Crops Manual, University of Wisconsin-Exension, Cooperative Extension. https://www.hort.purdue.edu/newcrop/afcm/mustard.html

  • Orona-Tamayo D, Valverde ME, Paredes-López O (2017) Chia—The New Golden Seed for the 21st Century. Sustainable Protein Sources, 265–281

  • Pakar N, Pirasteh-Anosheh H, Emam Y, Pessarakli M (2016) Barley growth, yield, antioxidant enzymes and ions accumulation affected by Pgrs under salinity stress. J Plant Nutr 39:1372–1379. https://doi.org/10.1080/01904167.2016.1143498

    Article  CAS  Google Scholar 

  • Pal A, Kachhwaha SS, Maji S, Babu MKG (2010) Thumba (Citrullus colocynthis) seed oil: a sustainable source of renewable energy for biodiesel production. J Sci Ind Res 69:384–389

    CAS  Google Scholar 

  • Palada M, Chang L (2003a) Suggested cultural practices for vegetable amaranth. The World Vegetable Centre (AVRDC), International Cooperators’ Fact Sheet: Shanhua, Taiwan. 3–552

  • Palada M, Chang L (2003b) Suggested cultural practices for vegetable amaranth. The World Vegetable Centre (AVRDC), International Cooperators’ Fact Sheet: Shanhua, Taiwan. 3–552.

  • Papastylianou I, Puckridge DW, Carter ED (1981) Nitrogen nutrition of cereals in a short-term rotation. I Single season treatments as a source of nitrogen for subsequent cereal crops. Aust J Agric Res 32(5):703–712

    Google Scholar 

  • Peperkamp M (2014) Chia from Bolivia: a modern super seed in a classic pork cycle. CBI Marked Intelligence (pp. 1 15). Netherland: Ministry of Foreign Affairs. ,www.cbi.eu/market-information/grains-pulses/chia/

  • Phalan B, Green R, Balmford A (2014) Closing yield gaps: perils and possibilities for biodiversity conservation. Philosophical Trans Royal Soc B: Biol Sci 369:20120285

    Google Scholar 

  • Pitman MG, Läuchli A (2002)“Globalimpactofsalinityandagricultural ecosystems,”in Salinity:Environment—Plants—Molecules, edsA.LäuchliandU. Lüttge (Dordrecht:Kluwer),3–20

  • Pontieri P, Troisi J, Fiore RD, Bean SR, Roemer E, Boffa A, Giudice AD, Pizzolante G, Alifano P, Giudice LD (2014) Mineral contents in grains of seven food grade sorghum hybrids grown in Mediterranean environment. J Crop Sci 8(11):1550–1559

    Google Scholar 

  • Potter L (2016) How can the people’s sovereignty be achieved in the oil palm sector? Is the plantation model shifting in favour of smallholders. Land and development in Indonesia. Searching for the people’s sovereignty 315–342

  • Pray C E, Nagaraja L (2009) Pearl millet and sorghum improvement in India (Vol. 919). Intl Food Policy Res Inst

  • Pulvento C, Riccardi M, Lavini A, D'andria R, Ragab R (2013) SALTMED model to simulate yield and dry matter for quinoa crop and soil moisture content under different irrigation strategies in south Italy. Irrig Drain 62(2):229–238

    Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453. https://doi.org/10.1002/ldr.853

    Article  Google Scholar 

  • Qasim M, Gulzar S, Khan MA (2011) Halophytes as medicinal plants. In: Ozturk M, Mermut AR, Celik A (eds) Urbanization, land use, land degradation and environment. Daya Publishing House, Turkey

    Google Scholar 

  • Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin X, Wu F, Zhang G (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703. https://doi.org/10.1007/s00122-010-1479-2

    Article  CAS  Google Scholar 

  • Radhouane L (2007) Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afr J Biotechnol 6(9):1102–1105

    CAS  Google Scholar 

  • Ragnarsdottir KV (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Soc 157:859–876

    CAS  Google Scholar 

  • Rahman MM, Mostafiz SB, Paatero JV, Lahdelma R (2014) Extension of energy crops on surplus agricultural lands: a potentially viable option in developing countries while fossil fuel reserves are diminishing. Renew Sustain Energy Rev 29:108–119

    Google Scholar 

  • Raimondi G, Rouphael Y, Di Stasio E, Napolitano F, Clemente G, Maiello R et al (2017) Evaluation of Salvia hispanica performance under increasing salt stress conditions. Acta Hortic 1170:703–708

    Google Scholar 

  • Rajamanickam E, Gurudeeban S, Ramanathan T, Satyavani K (2010) Evaluation of anti inflammatory activity of Citrullus colocynthis. Int J Curr Res 2:67–69

    Google Scholar 

  • Ramoliya PJ, Pandey AN (2003) Soil salinity and water status affect growth of Phoenix dactylifera seedlings. New Zealand Journal of Crop and Horticultural Science 31(4):345–353

    Google Scholar 

  • Rao NK, Shahid M (2012a) Quinoa–a promising new crop for the Arabian Peninsula. Am-Eurasian J Agric Environ Sci 12:1350–1355. https://doi.org/10.5829/idosi.aejaes.2012.12.10.1823

    Article  Google Scholar 

  • Rao NK, Shahid M (2012b) Quinoa–a promising new crop for the Arabian Peninsula. Am-Eurasian J Agric Environ Sci 12:1350–1355. https://doi.org/10.5829/idosi.aejaes.2012.12.10.1823

    Article  Google Scholar 

  • Rao NK, Shahid M (2012c) Quinoa–a promising new crop for the Arabian Peninsula. American-EurasianJ AgricEnvironSci 12:1350–1355

    Google Scholar 

  • Rao NK, Rahman KU, Shoaib. (2013a) Quinoa – prospects as an alternative crop for salt-affected areas. 3rd International Conference on Neglected and Under-utilized Species, 25-27 September 2013, At Accra, Ghana

  • Rao NK, Rahman KU, Shoaib (2013b) Quinoa – prospects as an alternative crop for salt-affected areas. 3rd International Conference on Neglected and Under-utilized Species, 25-27 September 2013, At Accra, Ghana

  • Rao PS, Kumar CG, Prakasham RS, Rao AU, Reddy BVS (2015) Sweet sorghum: breeding and bioproducts. In: Cruz VMV, Dierig DA (eds) Industrial Crops 9: 1-28. Springer, New York. https://doi.org/10.1007/978-1-4939-1447-0_1

    Chapter  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soildrying. J Agron Crop Sci 197:348–360

    Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003a) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189. https://doi.org/10.1081/FRI-120018884

    Article  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003b) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189. https://doi.org/10.1081/FRI-120018884

    Article  Google Scholar 

  • Robert JW (1986) The soybean solution: meeting world food needs. NIT-College of Agriculture, University of Illinois at Urbana, Champaign, USA, 1 Bulletin, pp. 4–27

  • Rodríguez JP, Rahman H, Thushar S, Singh RK (2020a) Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet 11

  • Rodríguez JP, Rahman H, Thushar S, Singh RK (2020b) Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet, 11

  • Rodríguez-Navarro DN, Oliver IM, Contreras MA, Ruiz-Sainz JE (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–190

    Google Scholar 

  • Roy RC, Sagar A, Tajkia JE, Razzak MDA, Zakir Hossain AKM (2018) Effect of salt stress on growth of sorghum germplasms at vegetative stage. J Bangladesh Agril Univ 16(1):67–72

    Google Scholar 

  • Royo C, Abaza M, Blanco R, García del Moral LF (2000) Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Funct Plant Biol 27(11):1051–1059

    CAS  Google Scholar 

  • Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    CAS  Google Scholar 

  • Sadeghipour O, Abbasi S (2012) Soybean response to drought and seed inoculation. World Appl. Sci J 17:55–60

    CAS  Google Scholar 

  • Sailaja K, Sujatha B (2013) Impact of salt stress (NaCl) on pigments, phenols and flavonoids in C4 (sorghum bicolor) and C3 (Oryza sativa) cultivars. Int J Biol Pharm Res 4(5):361–367

    Google Scholar 

  • Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA (2014) An evaluation of Moringa peregrina seeds as a source for biofuel. Ind. Crops Prod 61:49–61

  • Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA, Atabani AE (2015) Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil. Energy Convers. Manage. 92:535–542

  • Salehi M, Arzani A (2013) Grain quality traits in triticale influenced by field salinity stress. AJCS 7(5):580–587

    CAS  Google Scholar 

  • Salehi M, Arzani A (2014) Evaluation of triticale genotypes for salt tolerance using physiological traits 2014. Emir J Food Agric 26(3):277–283

    Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain 25(1):145–149

    Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195(6):427–441. https://doi.org/10.1111/j.1439-037x.2009.00387

    Article  Google Scholar 

  • Santos RF, Bassegio, D, de Almeida Silva M (2017) Productivity and production components of safflower genotypes affected by irrigation at phenological stages. Agric. Water Manag. 186:66–74

  • Sattar H, Mehrazi M, Awartani M, Awad AR (2002) Alfalfa crop water requirement study in the United Arab Emirates. Emirates J Agric Res 4:12–24

    Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12(3):378–386

    CAS  Google Scholar 

  • Setter T, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34. https://doi.org/10.1023/A:1024573305997

    Article  CAS  Google Scholar 

  • Shanazari M, Golkar P, Maibody AMM (2018) Effects of drought stress on some agronomic and bio-physiological traits of Trtiticum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science 64:2005–2018. https://doi.org/10.1080/03650340.2018.1472377

    Article  Google Scholar 

  • Sharma B, Rashid U, Anwar F, Erhan S (2009) Lubricant properties of Moringa oil using thermal and tribological techniques. J Therm Anal Calori 96:999–1008

  • Shiferaw, B., Kassie, M., Jaleta, M., Yirga, C. (2014). Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 44:272-284

  • Singh S, Angadi SV, Grover K, Begna S, Auld D (2016) Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains. Agric Water Manag 163:354–362

    Google Scholar 

  • Singhal RS, Kulkarni PR (1988a) Review: amaranths-an underutilized resource. Int J Food Sci Technol 23:125–139. https://doi.org/10.1111/j.1365-2621.1988.tb00559.x

    Article  Google Scholar 

  • Singhal RS, Kulkarni PR (1988b) Review: amaranths-an underutilized resource. Int J Food Sci Technol 23:125–139. https://doi.org/10.1111/j.1365-2621.1988.tb00559.x

    Article  Google Scholar 

  • Smith LS, Thelen KD, MacDonald SJ (2013) Yield and quality analyses of bioenergy crops grown on a regulatory brownfield. Biomass and Bioenergy 49:123–130. https://doi.org/10.1016/j.biombioe.2012.12.017

    Article  CAS  Google Scholar 

  • Solaiman Z, Colmer TD, Loss SP, Thomson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58(5):406–412

    Google Scholar 

  • Sun Y, Niu G, Osuna P, Zhao L, Ganjegunte G, Peterson G, Peralta-Videa JR, Gardea-Torresdey JL (2014) Variability in salt tolerance of sorghum bicolor L. Agricultural Science 2. Issue 1:09–21

    Google Scholar 

  • Suriano S, Iannucci A, Codianni P, Fares C, Russo M, Pecchioni N, Marciello U, Savino M (2018) Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Res Int 113:221–233

    CAS  Google Scholar 

  • Taffouo VD, Kouamou JK, Ngalangue LMT, Ndjeudji BAN, Akoa A (2009) Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L. Walp.) cultivars. Int. J. Bot 5(2):135–143

    CAS  Google Scholar 

  • Tang Y, Xie JS, Geng S (2010) Marginal land-based biomass energy production in China. J Integr Plant Biol 52:112–121. https://doi.org/10.1111/j.1744-7909.2010.00903.x

    Article  Google Scholar 

  • Tarawali SA, Singh BB, Peters M, Blade SF (1997a) Cowpea haulms as fodder. In: Singh BB (ed) Advances in Cowpea Research, IITA

  • Tarawali SA, Singh BB, Peters M, Blade SF (1997b) Cowpea haulms as fodder. In: Singh BB (ed) Advances in Cowpea Research, IITA

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. https://doi.org/10.1126/science.1183700

    Article  CAS  Google Scholar 

  • Theib O, Ahmed H, Mustafa MP (2005) Faba bean productivity under rainfed and supplementing irrigation in northern Syria. Agric Water Management 73 N(1):57–72

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600. https://doi.org/10.1126/science.1133306

    Article  CAS  Google Scholar 

  • Tomich TP, Kilby P, Johnston BF (1995) Transforming agrarian economies: opportunities seized, opportunities missed. Cornell University Press, USA

    Google Scholar 

  • Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, Hussain J (2015) Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): a review. J Food Sci Technol 1:9. https://doi.org/10.1007/s13197-015-1967-0

    Article  CAS  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop Res 104(1-3):123–129. https://doi.org/10.1016/j.fcr.2007.05.014

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2005) Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breed 124:459–463

    CAS  Google Scholar 

  • Vigouroux Y, Barnaud A, Scarcelli N, Thuillet AC (2011) Biodiversity, evolution and adaptation of cultivated crops. Comptes rendus biologies 334:450–457

  • Vijayalakshmi T, Varalaxmi Y, Jainender S, Yadav SK, Vanaja M, Jyothilakshmi N, Maheswari M (2012) Physiological and biochemical basis of water-deficit stress tolerance in pearl millet hybrid and parents. Am J Plant Sci 3:1730–1740

    CAS  Google Scholar 

  • Waddington SR, Li X, Dixon J, Hyman G, De Vicente MC (2010) Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security 2(1):27–48

    Google Scholar 

  • Wezel A (2000) Scattered shrubs in pearl millet fields in semiarid Niger: Effect on millet production. Agrofor. Syst. 48:219–228

  • Win AN, Xue Y, Chen B, Liao F, Chen F, Yin N, Mei F, Wang B, Shi X, He Y, Chai Y (2018) Chia (Salvia hispanica) experiment at a 30° N site in Sichuan Basin, China. Ciência Rural 48(9):e20180105. https://doi.org/10.1590/0103-8478cr20180105

    Article  Google Scholar 

  • Yadav PC, Sadhu AC, Swarnkar P, Pate MR (2010) Effect of integrated nitrogen management on forage yield of multicut sorghum, available nitrogen and microbial count in the soil. J. Indian Soc Soil Sci. 58:303–308

  • Yazar A, Incekaya Ç, Sezen SM, Jacobsen SE (2015a) Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop Pasture Sci 66(10):993–1002

    CAS  Google Scholar 

  • Yazar A, Incekaya Ç, Sezen SM, Jacobsen SE (2015b) Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop Pasture Sci 66(10):993–1002

    CAS  Google Scholar 

  • Yeboah S, OwusuDanquah E, Lamptey J, Mochiah M, Lamptey S, Oteng-Darko P et al (2013) Influence of planting methods and density on performance of chia (Salvia hispanica) and its suitability as an oilseed plant. Agric Sci 2(14):26

    Google Scholar 

  • Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130:618–625

    CAS  Google Scholar 

  • Yousfi S, Serret MD, Voltas J, Araus JL (2010) Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, ∆13C, and d15N of durum wheat and related amphiploids. J Exp Bot 61(13):3529–3542

    CAS  Google Scholar 

  • Youssef T, Awad MA (2008) Mechanisms of Enhancing Photosynthetic Gas Exchange in Date Palm Seedlings (Phoenix dactylifera L.) under Salinity Stress by a 5- Aminolevulinic Acid-based Fertilizer. J Plant Growth Regulation 27(1):1–9

    CAS  Google Scholar 

  • Zannini E, Jones JM, Renzetti S, Arendt EK (2012) Functional replacements for gluten. Annu Rev Food Sci Technol 3:227–245

    CAS  Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y, Zhu Y, Lu F, Zhang Z, Zou J (2015) Seed Priming with Polyethylene Glycol Induces Physiological Changes in Sorghum (Sorghum bicolor L. Moench) Seedlings under Suboptimal Soil Moisture Environments. PLoS ONE 10(10):e0140620. https://doi.org/10.1371/journal.pone.0140620

    Article  CAS  Google Scholar 

  • Zhu F (2018) Triticale: Nutritional composition and food uses. Food Chem 241:468-479

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW (2000) Genetic diversity and disease control in rice. Nature 406(6797):718-722

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iftikhar Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Kitae Baek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.I., Farooq, M., Muscolo, A. et al. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—a review. Environ Sci Pollut Res 27, 28695–28729 (2020). https://doi.org/10.1007/s11356-020-09111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09111-6

Keywords

Navigation