Skip to main content

Crop Diversification Using Saline Resources: Step Towards Climate-Smart Agriculture and Reclamation of Marginal Lands

  • Chapter
  • First Online:
The Food Security, Biodiversity, and Climate Nexus

Abstract

Global climatic changes have influenced world biodiversity and ecosystems. Massive industrialization, deforestation, and pollution have accelerated the process resulting in land degradation and major crop losses and limiting food resources. Extreme climate variability and change have directly impacted on crop production. These changes include the rise of temperature and intermittent rainfall and drought. Global climatic challenges in tandem with the reduction of freshwater resources, soil salinization, and expanding salinity due to erroneous irrigation techniques have exacerbated the problems of productive land degradation. Countries existing in arid climates (such as in the Gulf region), including Pakistan, are prone to face food insecurity as a consequence of fluctuating market prices owing to huge rates of food import. With an ever-increasing population, there has been a significant rise in starvation with estimates indicating a 25–75% increase in production to fulfill food demand. Considering these facts, effective measures are needed to feed the world population. However, this would necessitate well-planned system. This chapter highlights the conceivable outcomes of climate-smart agriculture and reclamation of marginal lands by using saline resources. Recent studies suggested that crop diversification (non-conventional agriculture) using natural saline resources may provide a solution to feed the livestock besides helping in land reclamation. Research on salt and drought resisting plants points toward crop halophytism that may assist in achieving the essential targets. The ability of halophytes to adapt to climatic changes and human activities has been discovered, which could aid in the global fight against hunger. The removal of salts and trace metals, as well as intercropping halophytes with traditional crops for diverse ecological and economic goals on degraded lands, has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsar S, Aziz I, Qasim M, Baloch AH, Syed MN, Gulzar SG (2021) Salt tolerance of a leaf succulent halophyte Salsola imbricata—growth and water relations perspective. Int J Biol Biotech 18(3):499–507

    CAS  Google Scholar 

  • Agudelo A, Carvajal M, Martinez-Ballesta MDC (2021) Halophytes of the Mediterranean Basin—underutilized species with the potential to be nutritious crops in the scenario of the climate change. Foods 2021(10):119. https://doi.org/10.3390/foods10010119

    Article  CAS  Google Scholar 

  • Ahmed MZ, Shimazaki T, Gulzar S, Kikuchi A, Gul B, Khan MA, Watanabe KN (2013) The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Funct Plant Biol 40(9):860–871. https://doi.org/10.1071/FP12346

    Article  CAS  Google Scholar 

  • Albaho M, Green JL (2000) Suaeda salsa, a desalinating companion plant for greenhouse tomato. Hort Sci 35:620–623

    Google Scholar 

  • Anderson WB, Seager R, Baethgen W, Cane M, You L (2019) Synchronous crop failures and climate forced production variability. Sci Adv 5:eaaw1976. https://doi.org/10.1126/sciadv.aaw1976

  • Arnell NW, Cannell MGR, Hulme M, Ovats RS, Mitchell JFB, Nicholls RJ, Parry ML, Livermore MTJ, White A (2002) The consequences of CO2 stabilization for the impacts of climate change. Clim Change 53:413–446

    Article  CAS  Google Scholar 

  • Aziz I, Khan MA (2001) Ecophysiology of A. marina populations growing in polluted coasts around Arabian sea. Pak J Bot 33(4):429–441

    Google Scholar 

  • Aziz I, Khan F (2014) Distribution, ecology and ecophysiology of mangroves in Pakistan. In: Khan MA, Böer B, Öztürk M, Al Abdessalaam TZ, Clüsener-Godt M, Gul B (eds) Sabkha ecosystems. Tasks for vegetation science, vol 47. Springer, Dordrecht, pp 55–66. https://doi.org/10.1007/978-94-007-7411-7_3

  • Baig MB, Akbar G, Malik AH (2007) Sustainable strategies to reclaim sandy desert of Cholistan—opportunities and perspectives. In: Proceedings of ESDev—2007 CIIT, Pakistan, Abbottabad, pp 1137–1145

    Google Scholar 

  • Bareen F, Tahira SA (2011) Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. J Hazard Mater 186(1):443–450. https://doi.org/10.1016/j.jhazmat.2010.11.022

    Article  CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2008) Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresour Technol 99:6866–6877. https://doi.org/10.1016/j.biortech.2008.01.043

    Article  CAS  Google Scholar 

  • Chalbi N, Hessini K, Gandour M, Mohamed S, Smaoui A, Abdelly C, Youssef A, Ben N (2013) Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? J Plant Nutr Soil Sci 2013(176):138–147

    Article  Google Scholar 

  • Chaudhry QZ, Mahmood A, Rasul G, Afzaal M (2009) Climate change indicators of Pakistan. Technical Report no. PMD-22/2009 42

    Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes food security dry lands. Elsevier Inc., Amsterdam, pp 111–123. https://doi.org/10.1016/B978-0-12-801854-5.00007-8

  • Cordova MR (2020) A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia. Marine Poll Bull 111–819

    Google Scholar 

  • Dassanayake M, Larkin JC (2017) Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front Plant Sci 8:406. https://doi.org/10.3389/fpls.2017.00724

    Article  Google Scholar 

  • de La Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55, 1159–1168. https://doi.org/10.1016/j.chemosphere.2004.01.028

  • Dragovic R, Zlatkovic B, Dragovic S, Petrovic J, Mandic LJ (2014) Accumulation of heavy metals in different parts of Russian thistle (Salso tragus, Chenopodiaceae), a potential hyperaccumulator plant species. Biologica Nyssana 5(2):83–90. http://journal.pmf.ni.ac.rs/bionys/index.php/bionys/article/view/94

  • FAO (2018) The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy

    Google Scholar 

  • Ghaffarian MR, Yadavi A, Movahhedi Dehnavi M, Dabbagh Mohammadi Nassab A, Salehi M (2020) Improvement of physiological indices and biological yield by intercropping of Kochia (Kochia scoparia), Sesbania (Sesbania aculeata) and Guar (Cyamopsis tetragonoliba) under the salinity stress of irrigation water. Physiol Mol Biol Plants 26(7):1319–1330. https://doi.org/10.1007/s12298-020-00833-y

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140. https://doi.org/10.1016/j.jplph.2004.11.011

    Article  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. CRC Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li+, Na+ and Cl) by Tamarix aphylla. Physiol Plant 73(4):541–546. https://doi.org/10.1111/j.1399-3054.1988.tb05438.x

    Article  CAS  Google Scholar 

  • Hameed A, Hussain T, Gulzar S, Aziz I, Gul B, Khan MA (2012) Salt tolerance of a cash crop halophyte Suaeda fruticosa: biochemical responses to salt and exogenous chemical treatments. Acta Physiol Plant 34:2331–2340. https://doi.org/10.1007/s11738-012-1035-6

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int 2014:589341. https://doi.org/10.1155/2014/589341

    Article  Google Scholar 

  • He B, Yun Z, Shi J, Jiang G (2013) Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chinese Sci Bullet 58(2):134–140. https://doi.org/10.1007/s11434-012-5541-0

    Article  CAS  Google Scholar 

  • Hoi KD, Hyun KT (2013) Salicornia spp.-derived salt and its production process. U.S. Patent No 8,420,152

    Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, David AM (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67(4):386–391. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  • Hussain M, Mumtaz S (2014) Climate change and managing water crisis: Pakistan’s perspective. Rev Environ Health 29:71–77. https://doi.org/10.1515/reveh-2014-0020

    Article  Google Scholar 

  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2019) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess (2020)192:48. https://doi.org/10.1007/s10661-019-7956-4

  • Hussain MI, Farooq N, Muscolo A, Rehman A (2020) Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—a review. Env Sci Poll Res. https://doi.org/10.1007/s11356-020-09111-6

    Article  Google Scholar 

  • IPCC. 2007. Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 p

    Google Scholar 

  • Ismail S, Saifullah SM, Khan SH (2014) Bio-geochemical studies of Indus delta mangrove ecosystem through heavy metal assessment. Pak J Bot 46(4):1277–1285. http://www.pakbs.org/…/17.pdf

  • Joshi A, Kanthaliya B, Arora J (2018) Halophytes of Thar desert: Potential source of nutrition and feedstuff. Int J Bioassays 8:5674–5683

    Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2016) Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Appl Ecol Environ Res 14(1):367–382. https://doi.org/10.15666/aeer/1401_367382

  • Kasassi A, Rakimbei P, Karagiannidis A, Zabaniotou A, Tsiouvaras K, Nastis A, Tzafeiropoulou K (2008) Soil contamination by heavy metals: measurements from a closed unlined landfill. Biores Technol 99(18):8578–8584. https://doi.org/10.1016/j.biortech.2008.04.010

    Article  CAS  Google Scholar 

  • Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Khan MA, Benno B, Kust GS, Barth HJ (eds) Sabkha ecosystems, tasks for vegetation science, vol 42. Springer, Netherlands, pp 129–153. https://doi.org/10.1007/978-1-4020-5072-5

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric Ecosyst Environ 129:542–546

    Article  Google Scholar 

  • Khan W-D, Tanveer M, Shaukat R, Ali M, Pirdad F (2020) Salt and drought stress tolerance in plants: signaling and communication in plants. Springer, Berlin. ISBN: 9783030402761

    Google Scholar 

  • Liang J, Shi W (2021) Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: a three-year field experiment. Field Crops Res 262. https://doi.org/10.1016/j.fcr.2020.108027

  • Liu L, Wang B (2021) Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology 2021(10):353. https://doi.org/10.3390/biology10050353

    Article  Google Scholar 

  • Liu M, Pan T, Allakhverdiev SI, Yu M, Shabala S (2020) Crop halophytism: an environmentally sustainable solution for global food security. Trends Plant Sci 2020.25(7):630–634. https://doi.org/10.1016/j.tplants.2020.04.008.PMID:32444156

  • Liu Z, Hamuti A, Abdulla H, Zhang F, Mao X (2016) Accumulation of metallic elements by native species thriving in two mine tailings in Aletai. China Environ Earth Sci 75:781. https://doi.org/10.1007/s12665-016-5594-5

    Article  CAS  Google Scholar 

  • Lu Y, Li X, He M, Zeng F, Li X (2017) Accumulation of heavy metals in native plants growing on mining-influenced sites in Jinchang: a typical industrial city (China). Environ Earth Sci 76(13):446. https://doi.org/10.1007/s12665-017-6779-2

    Article  CAS  Google Scholar 

  • Malik KA, Aslam Z, Naqvi M (1986) Kallar grass. A plant for saline land. Ghulam Ali Printers, Lahore, Pakistan, 93 p

    Google Scholar 

  • Malik SM, Awan H, Khan N (2012) Mapping vulnerability to climate change and its repercussions on human health in Pakistan. Global Health 8:31. https://doi.org/10.1186/1744-8603-8-31

  • Manousaki E, Kalogerakis N (2011) Halophytes—an emerging trend in phytoremediation. Int J Phytorem 13(10):959–969. https://doi.org/10.1080/15226514.2010.532241

    Article  CAS  Google Scholar 

  • Martínez-Sánchez MJ, García-Lorenzo ML, Pérez-Sirvent C, Bech J (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123:8–12. https://doi.org/10.1016/j.gexplo.2012.01.007

    Article  CAS  Google Scholar 

  • Milić D, Luković J, Ninkov J, Zeremski-Škorić T, Zorić L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7(2):307–317. https://doi.org/10.2478/s11535-012-0015-6

    Article  CAS  Google Scholar 

  • Möller A, Müller HW, Abdullah A, Abdelgawad G, Utermann J (2005) Urban soil pollution in Damascus, Syria: concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma 124(1–2):63–71. https://doi.org/10.1016/j.geoderma.2004.04.003

    Article  CAS  Google Scholar 

  • Mujeeb A, Aziz I, Ahmed MZ, Alvi SK, Shafiq S (2020) Comparative assessment of heavy metal accumulation and bio indication in coastal dune halophytes. Ecotoxicol Environ Saf 195:110486. https://doi.org/10.1016/j.ecoenv.2020.110486

    Article  CAS  Google Scholar 

  • Mujeeb A (2021) Phytoremediation potential of halophytes in coastal and near coastal areas of Karachi. Ph.D. dissertation. Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan

    Google Scholar 

  • Mujeeb A, Aziz I, Ahmed MZ, Shafiq S, Fatima S, Alvi SK (2021) Spatial and seasonal metal variation, bioaccumulation and biomonitoring potential of halophytes from littoral zones of the Karachi Coast. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146715

    Article  Google Scholar 

  • Munir N, Hasnaina M, Roessnerb U, Abideen Z (2021) Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit Rev Environ Sci Techhttps://doi.org/10.1080/10643389.2021.1877033etal

  • Nanhapo PI, Yamane K, Iijima M (2017) Mixed cropping with ice plant alleviates the damage and the growth of cowpea under consecutive NaCl treatment and after the recovery from high salinity. Plant Prod Sci 20(1):111–125. https://doi.org/10.1080/1343943X.2017.1282828

  • Panda SS, Chaturvedi N, Dhal NK, Rout NC (2013) An assessment of heavy metal accumulation in mangrove species of Bhitarkanika, Odisha, India. Res Plant Biol 3(6):1–5. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.944.1471&rep=rep1&type=pdf

  • Qureshi RH, Barrett-Lennard EG (1998) Saline agriculture for irrigated land in Pakistan: a handbook, Monograph No 50, Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR), 1–142

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34. https://doi.org/10.3390/plants8020034

  • Reckling M, Döring TF, Bergkvist G, Chmielewski F, Stoddard F, Watson C, Seddig S, Bachinger J (2018) Grain legume yield instability has increased over 60 years in long-term field experiments as measured by a scale-adjusted coefficient of variation. Asp Appl Biol 2018(138):15–20

    Google Scholar 

  • Rijal S (2019) Agroforestry system: approaches for climate change mitigation and adaptation. Big Data Agric [BDA] 1(2):23–25. https://doi.org/10.26480/bda.02.2019.23.25

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 2014(111):3268–3273

    Article  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  Google Scholar 

  • Sarkar D, Kar SK, Chattopadhyay A, Rakshit A, Tripathi VK, Dubey PK, Abhilash PC (2020) Low input sustainable agriculture: a viable climate-smart option for boosting food production in a warming world. Ecol Ind 115(2020):106412. https://doi.org/10.1016/j.ecolind.2020.106412

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 109–230

    Google Scholar 

  • Shahid SA, Al-Shankiti A (2013) Sustainable food production in marginal lands—case of GDLA member countries. Int Soil Water Conserv Res 1(1):24–38. https://doi.org/10.1016/S2095-6339(15)30047-2

    Article  Google Scholar 

  • Simpson CR, Franco JG, King SR, Volder A (2018) Intercropping halophytes to mitigate salinity stress in watermelon. Sustainability 10(3):681. https://doi.org/10.3390/su10030681

  • Sun YC, Wen JL, Xu F, Sun RC (2011) Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica. Biores Technol 102(10):5947–5951. https://doi.org/10.1016/j.biortech.2011.03.012

    Article  CAS  Google Scholar 

  • Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as source of edible oil. J Arid Environ 68:315–321

    Article  Google Scholar 

  • Wijngaard RR, van der Perk M, van der Grift B, Ton CM, de Nijs M, Bierkens FP (2017) The impact of climate change on metal transport in a lowland catchment. Water Air Soil Pollut 228:107. https://doi.org/10.1007/s11270-017-3261-4

  • Yensen NP (2006) Halophyte uses for the twenty-first century. Springer, Dordrecht, pp 367–396

    Google Scholar 

  • Yohe GW, Lasco RD, Ahmad QK, Arnell NW, Cohen SJ, Hope C, Janetos AC, Perez RT (2007) Perspectives on climate change and sustainability. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, pp 811–841

    Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Haz Mater 183(1–3):609–615. https://doi.org/10.1016/j.jhazmat.2010.07.068

    Article  CAS  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 2017(114):9326–9331

    Article  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol (Stuttg). Suppl 1:31–38. https://doi.org/10.1111/plb.12884

  • ZuccaRini P (2008) Ion uptake by halophytic plants to mitigate saline stress in Solanum lycopersicon L., and different effect of soil and water salinity. Soil Water Res 3(2):62–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, I., Mujeeb, A., Belgacem, A.O., Baig, M.B. (2022). Crop Diversification Using Saline Resources: Step Towards Climate-Smart Agriculture and Reclamation of Marginal Lands. In: Behnassi, M., Gupta, H., Barjees Baig, M., Noorka, I.R. (eds) The Food Security, Biodiversity, and Climate Nexus. Springer, Cham. https://doi.org/10.1007/978-3-031-12586-7_21

Download citation

Publish with us

Policies and ethics