Skip to main content

Advertisement

Log in

Environmental performances of production and land application of sludge-based phosphate fertilizers—a life cycle assessment case study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphorus (P) is a non-renewable resource extracted from phosphate rock to produce agricultural fertilizers. Since P is essential for life, it is important to preserve this resource and explore alternative sources of P to reduce its criticality. This study aimed to assess whether fertilizing with sludge-based phosphate fertilizers (SBPF) can be a suitable alternative to doing so with fertilizers produced from phosphate rock. Environmental impacts of production and land application of SBPF from four recovery processes were compared to those of two reference scenarios: triple super phosphate (TSP) and sewage sludge. To avoid bias when comparing scenarios, part of the environmental burden of wastewater treatment is allocated to sludge production. The CML-IA method was used to perform life cycle impact assessment. Results highlighted that production and land application of SBPF had higher environmental impacts than those of TSP due to the large amounts of energy and reactants needed to recover P, especially when sludge had a low P concentration. Certain environmental impacts of production and land application of sewage sludge were similar to those of SBPF. Sensitivity analysis conducted for cropping systems highlighted variability in potential application rates of sewage sludge or SBPF. Finally, because they contain lower contents of heavy metals than sewage sludge or TSP, SBPF are of great interest, but they require more mineral fertilizers to supplement their fertilization than sewage sludge. Thus, SBPF have advantages and disadvantages that need to be considered, since they may influence their use within fertilization practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AGRESTE (2014) Les dossiers 2014 (données de 2011), Enquête Pratiques Culturales N°21. p. 72 pages.

  • Althaus, H.J., Hischier, R., Osses, M., Primas, A., Hellweg, S., Jungbluth, N., Chudacoff, M. (2007). Life cycle inventories of chemicals, Ecoinvent report no. 8. p. 957 pages.

  • Amery F, Schoumans OF (2014) Agricultural phosphorus legislation in Europe. ILVO, Merelbeke, 45 pages

    Google Scholar 

  • ARVALIS (2013) Fumure P K. pp. pp 151–156.

  • Bashan L, Bashan Y (2014) Recent advances in removing P from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  Google Scholar 

  • Bisinella de Faria AB, Spérandio M, Ahmadi A, Tiruta-Barna L (2015) Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA). Water Res 84:99–111

    Article  CAS  Google Scholar 

  • Braak E, Auby S, Piveteau S, Guilayn F, Daumer ML (2016) Phosphorus recycling potential assessment by a biological test applied to wastewater sludge. Environ Technol 37(11):1398–1407

    Article  CAS  Google Scholar 

  • Bradford-Hartke Z, Lane J, Lant P, Leslie G (2015) Environmental benefits and burdens of phosphorus recovery from municipal wastewater. Environ Sci Technol 49(14):8611–8622

    Article  CAS  Google Scholar 

  • Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr Cycl Agroecosyst 91(2):173

    Article  CAS  Google Scholar 

  • Charlton A, Sakrabani R, Tyrrel S, Rivas Casado M, McGrath SP, Crooks B, Cooper P, Campbell CD (2016) Long-term impact of sewage sludge application on soil microbial biomass: an evaluation using meta-analysis. Environ Pollut 219:1021–1035

    Article  CAS  Google Scholar 

  • Cleary J (2010) The incorporation of waste prevention activities into life cycle assessments of municipal solid waste management systems: methodological issues. Int J Life Cycle Assess 15:579–589

    Article  Google Scholar 

  • COMIFER (2009) Teneurs en P, K et Mg des organes végétaux récoltés pour les cultures de plein champ et les principaux fourrages. 6 pages.

  • COMIFER (2017) Guide de la fertilisation raisonnée. Editions France Agricole. 606 pages.

  • Cordell D, Drangert J-O, White S (2009) The story of P: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: State of the art. Water Res 47(15):5480–5492

    Article  CAS  Google Scholar 

  • Daumer ML (2015) Innovation pour la réduction de l’impact environnemental des STEU- Valorisation énergétique et recyclage du phosphore des boues de STEU (METAPHOS), Rapport Irstea/Onema. p. 76 pages.

  • Dodd RJ, Sharpley AN (2015) Recognizing the role of soil organic phosphorus in soil fertility and water quality. Resour Conserv Recycl 105:282–293

    Article  Google Scholar 

  • Doka, G. (2007) Life cycle inventories of waste treatment services. Part IV wastewater treatment, Ecoinvent report 13. Swiss Centre for Life Cycle Inventories, Dubendorf, p. 60 pages.

  • Ecoinvent Professional Database (2007) Data v2.2. Copyright Swiss Centre for Life Cycle inventories.

  • Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346

    Article  Google Scholar 

  • Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542

    Article  CAS  Google Scholar 

  • El Diwani G, El Rafie S, El Ibiari NN, El-Aila HI (2007) Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 214(1):200–214

    Article  Google Scholar 

  • European commission (2017) Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions on the 2017 list of Critical Raw Materials for the EU, COM/2017/0490 final. p. 8 pages.

  • Gourdet C, Girault R, Berthault S, Richard M, Tosoni J, Pradel M (2017) In quest of environmental hotspots of sewage sludge treatment combining anaerobic digestion and mechanical dewatering: a life cycle assessment approach. J Clean Prod 143:1123–1136

    Article  CAS  Google Scholar 

  • Guilayn F, Braak E, Piveteau S, Daumer ML (2017) Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery. Environ Technol 38(11):1399–1407

    Article  CAS  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, et al. (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic. [1] Method: cml.leiden.edu/research/industrialecology/researchprojects/finished/new-dutch-lca-guide.html; [2] Characterization factors: cml.leiden.edu/software/data-cmlia.html, Dordrecht, 2002, pp. 692.

  • Holden NM (2015) Is “food waste” waste?, Available at: https://www.ucd.ie/t4cms/Is%20food%20waste%20waste.pdf. Accessed 23 March 2019

  • Houot, S., Pons, M.N., Pradel, M., Caillaud, M.A., Savini, I., Tibi, A. (2014) Valorisation des matières fertilisantes d'origine résiduaire sur les sols à usage agricole ou forestier. Impacts agronomiques, environnementaux, socio-économiques, Expertise scientifique collective, Inra-CNRS-Irstea (France).

  • INERIS (2002) Caractérisation des biogaz; Bibliographie et mesures sur sites. p. 82 pages.

  • IPCC (2006a) Guidelines for national greenhouse gas inventories, volume 4, agriculture, forestry and other land use. The Intergovernmental Panel on Climate Change (IPCC).

  • IPCC (2006b) Guidelines for national greenhouse gas inventories, volume 5, chapter 4: biological treatment of solid waste, The Intergovernmental Panel on Climate Change (IPCC).

  • Irstea (2016) Data from WWTP monitoring and from the plant owner, 2016.

  • ISO (2006a) ISO 14040—Environmental management—life cycle assessment—principles and framework.

  • ISO (2006b) ISO 14044—Environmental management—life cycle assessment—requires and guidelines.

  • Johansson, K., Perzon, M., Froling, M., Mossakowska, A., Svanstrom, M., 2008. Sewage sludge handling with phosphorus utilization—life cycle assessment of four alternatives. J Clean Prod 16(1), 135–151.

  • Jossa P, Remy C 2015. Life cycle assessment of selected processes for P recovery from sewage sludge, sludge liquor or ash, P-Rex project. p. 86 pages.

  • Journal Officiel (1998) Arrêté du 08/01/98 fixant les prescriptions techniques applicables aux épandages de boues sur les sols agricoles pris en application du décret n° 97-1133 du 08/12/97 relatif à l'épandage des boues issues du traitement des eaux usées. p. 11 pages.

  • Kalmykova Y, Palme U, Yu S, Fedje KK (2015) Life cycle assessment of P sources from phosphate ore and urban sinks: sewage sludge and MSW incineration fly ash. Int J Environ Res 9:133–140

    CAS  Google Scholar 

  • Kleemann R, Chenoweth J, Clift R, Morse S, Pearce P, Saroj D (2015) Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: lessons learned from the UK. Resour Conserv Recycl 105:347–359

    Article  Google Scholar 

  • Lindberg S, Landberg T, Greger M (2007) Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Plant Physiol Biochem 45(1):47–53

    Article  CAS  Google Scholar 

  • Linderholm K, Tillman A-M, Mattsson JE (2012) Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resour Conserv Recycl 66:27–39

    Article  Google Scholar 

  • Möller K, Oberson A, Bünemann EK, Cooper J, Friedel JK, Glaesner N, Hörtenhuber S, Loes A-K, Mäder P, Meyer G, Müller T, Symanczik S, Weissengruber L, Wollman I, Mogid J (2018) Improved P recycling in organic farming: navigating between constraints. Adv Agron 147:159–237

    Article  Google Scholar 

  • Montag D, Gethke K, Pinnekamp J, (2007) A feasible approach of integrating phosphate recovery as struvite at wastewater treatment plants, moving forward wastewater biosolids sustainability: technical, managerial, and public synergy. Moncton, New Brunswick, Canada.

  • MTES (2015) Loi n° 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte. p. 32 pages.

  • Münch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 35(1):151–159

    Article  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems, Ecoinvent report no. 15a. p. 308 pages.

  • Oldfield T, Holden NM, 2014. An evaluation of usptream assumptions in food-waste life cycle assessments, 9th International Conference on Life Cycle Assessment in the Agri-Food Sector. American Center for Life Cycle Assessment, San Francisco, California, USA.

  • Oldfield TL, White E, Holden NM (2018) The implications of stakeholder perspective for LCA of wasted food and green waste. J Clean Prod 170:1554–1564

    Article  Google Scholar 

  • Pradel M (2010) Analyses du Cycle de Vie de chantiers d’épandage de boues de station d’épuration (ECODEFI), Rapport IRSTEA. p. 133 pages.

  • Pradel, M. (2016) Guide pour la réalisation d’Analyses du Cycle de Vie pour les filières de traitement et de valorisation des boues d’épuration urbaine, rapport IRSTEA-Onema. p. 102.

  • Pradel M, Aissani L (2019) Environmental impacts of P recovery from a “product” life cycle assessment perspective: allocating burdens of wastewater treatment in the production of SBPF. Sci Total Environ 656:55–69

    Article  CAS  Google Scholar 

  • Pradel M, Pacaud T, Cariolle M (2013) Valorization of organic wastes through agricultural fertilization: coupling models to assess the effects of spreader performances on nitrogenous emissions and related environmental impacts. Waste Biomass Valor 4(4):851–872

    Article  CAS  Google Scholar 

  • Pradel M, Aissani L, Villot J, Baudez J-C, Laforest V (2016) From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge—a review. J Clean Prod 131:60–75

    Article  CAS  Google Scholar 

  • Pradel M, Aissani L, Canler JP, Roux JC, Villot J, Baudez JC, Laforest V (2018) Constructing an allocation factor based on product- and process-related parameters to assess environmental burdens of producing value-added sludge-based products. J Clean Prod 171:1546–1557

    Article  Google Scholar 

  • Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab J Chem 7(1):139–155

    Article  CAS  Google Scholar 

  • RDC Environnement (2007) Analyse du Cycle de Vie des modes de valorisation énergétique du biogaz issu de méthanisation de la Fraction Fermentescible des Ordures Ménagères collectée sélectivement en France ADEME, Gaz de France, p. 12.

  • Risch E, Gutierrez O, Roux P, Boutin C, Corominas L (2015) Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems. Water Res 77:35–48

    Article  CAS  Google Scholar 

  • Schrijvers D (2017) Evaluation environnementale des options de recyclage selon la méthodologie d’analyse de cycle de vie: établissement d’une approche cohérente appliquée aux études de cas de l’industrie chimique. Ph.D. thesis, Université de Bordeaux, 341p.

  • Sena M, Hicks A (2018) Life cycle assessment review of struvite precipitation in wastewater treatment. Resour Conserv Recycl 139:194–204

    Article  Google Scholar 

  • Sorensen BL, Dall OL, Habib K (2015) Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manag 45:391–399

    Article  Google Scholar 

  • Steen BA (2006) Abiotic resource depletion—different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11:49–54

    Article  Google Scholar 

  • Thibodeau C, Monette F, Glaus M (2014) Comparison of development scenarios of a black water source-separation sanitation system using life cycle assessment and environmental life cycle costing. Resour Conserv Recycl 92:38–54

    Article  Google Scholar 

  • UNIFA (2018) La fertilisation en France. https://www.unifa.fr/statistiques-du-secteur (Accessed 10/05/2017).

  • USGS (2018) Phosphate rock statistics and information. Available at: https://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2018-phosp.pdf

  • Zapka O, Muskolus A (2015) Product quality: fertilizing efficiency, results of pot and field tests, Report P-Rex project, 17 slides.

Download references

Acknowledgements

This study was financially supported by Agence Française pour la Biodiversité (AFB) (French Agency for Biodiversity). The authors kindly thank their colleagues Jean-Pierre Canler and Guillermo Baquerizo from the REVERSAAL Research Unit and Marie-Line Daumer from the OPAALE Research Unit at IRSTEA for providing LCI data on the WWTP and the P recovery processes. The authors would like to thank Michael Corson for proofreading the English of this paper as well as the two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilys Pradel.

Additional information

Responsible editor: Philippe Loubet

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradel, M., Lippi, M., Daumer, ML. et al. Environmental performances of production and land application of sludge-based phosphate fertilizers—a life cycle assessment case study. Environ Sci Pollut Res 27, 2054–2070 (2020). https://doi.org/10.1007/s11356-019-06910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06910-4

Keywords

Navigation