Skip to main content
Log in

Valorization of Organic Wastes Through Agricultural Fertilization: Coupling Models to Assess the Effects of Spreader Performances on Nitrogenous Emissions and Related Environmental Impacts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Organic waste land application generates nitrogenous emissions that have impacts on acidification, eutrophication and global warming. To assess these impacts with Life Cycle Assessment, emission factors are commonly used without taking into account neither the type and performance of land application techniques nor the type of organic waste applied. This paper proposes a methodological framework to assess the nitrogenous emissions by coupling technological performances of spreader and biophysical models, focusing on sewage sludge spreading in different weather and soil conditions. The first step consists of creating several spreading scenarios by combining a cropping system and a “spreader/sewage sludge” couple. The second step consists of testing the technological spreader performances regarding spatial distribution, application rate and soil compaction with a spreading simulator and the COMPSOIL model. Nitrogenous emissions are then simulated with STICS and DEAC models for different application rates and soil bulk densities. Finally, the simulated nitrogen losses from the models are linked with the real amounts of sewage sludge applied and the compacted soil due to spreader performances. Our approach shows that ammonia emissions during sewage sludge spreading can be directly linked to the spreader performances whereas nitrate leaching depends more on the soil and on the weather conditions. Nitrous oxide emissions mostly depend on the spreader weight and to the soil and the weather conditions. This method paves the way to new approaches: integrating technological performances of machines into biophysical and agricultural models in order to assess environmental impacts of agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Loi n°92-646 relative à l’élimination des déchets ainsi qu’aux installations classées pour la protection de l’environnement. In: Journal officiel (1992)

  2. Waste framework Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. In: Official Journal L 312, 22/11/2008, pp. 0003–0030 (2008)

  3. Grenelle de l’environnement. Atelier intergroupes sur les déchets. Rapport final, 40 pp (2007)

  4. Goulding, K.W.T.: Pathways of losses of fertilizer nitrogen at different scales. In: Mosier, A.R., Syers, J.K., Freney, J.R. (eds.) Agriculture and the Nitrogen Cycle, pp. 53–69. Island Press, Washington, DC (2004)

    Google Scholar 

  5. Peoples, M.B., Boyer, E.W., Goulding, K.W.T., Heffer, P., Ochwoh, V.A., Vanlauwe, B., Wood, S., Yagi, K., Van Cleemput, O.: Pathways of nitrogen loss and their impacts on human health and the environment. In: Mosier, A.R., Syers, J.K., Freney, J.R. (eds.) Agriculture and the Nitrogen Cycle, pp. 53–69. Island Press, Washington, DC (2004)

    Google Scholar 

  6. Webb, J., Ellis, S., Harrison, R., Garwod, T.W.D., Chambers, B.J.: Nitrogen in arable farming. In: Weidema, B.P., Meeusen, M.J.G. (eds.) Agricultural Data for Life Cycle Assess, pp. 113–124. Agricultural Economics research Institute (LEI), The Hague, NL (2000)

    Google Scholar 

  7. Erisman, J.W.: Key factors necessary to determine the impact on the nitrogen cycle and the resulting environmental effects as part of LCA for agricultural products. In: Weidema, B.P., Meeusen, M.J.G. (eds.) Agricultural Data for Life Cycle Assess, pp. 113–124. Agricultural Economics research Institute (LEI), The Hague, NL (2000)

    Google Scholar 

  8. Ausdley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliet, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., van Zeijts, H.: Harmonisation of Environmental Life Cycle Assessment for Agriculture. Final report, Concerted Action AIR3-CT94-2028, European Commission DG VI, Brussels, Belgium (1977)

  9. Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., Kuhlmann, H.: Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 20(3), 265–279 (2004)

    Article  Google Scholar 

  10. Brentrup, F., Küsters, J., Kuhlmann, H., Lammel, J.: Application of the Life Cycle Assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilisers. Eur. J. Agron. 14(3), 221–233 (2001)

    Article  Google Scholar 

  11. Kuesters, J., Jenssen, T.: Selecting the right fertilizer from an environmental life cycle perspective. IFA Technical conference, Marrakech, Marocco, 28 Sept–1 Oct 1998, 7 (1998)

  12. IPCC: Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (eds.) IGES, Japan (2006)

  13. Velthof, G.L., Kuikman, P.J., Oenema, O.: Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37(4), 221–230 (2003)

    Google Scholar 

  14. Addiscott, T.M., Powlson, D.: Partitioning losses of nitrogen fertilizer between leaching and denitrification. J. Agric. Sci. 118, 101–107 (1992). doi:10.1017/S0021859600068052

    Google Scholar 

  15. Jambert, C., Serca, D., Delmas, R.: Quantification of N-losses as NH3, NO and N2O and N2 from fertilized maize fields in southwestern France. Nutr. Cycl. Agrosyst. 48, 191–194 (1997)

    Article  Google Scholar 

  16. Bittman, S., Van Vliet, L.J.P., Kowalenko, C.G., McGinn, S., Hunt, D.E., Bounaix, F.: Surface-banding liquid manure over aeration slots: a new low-disturbance method for reducing ammonia emissions and improving yield of perennial grasses. Agron. J. 97(5), 1304–1313 (2005)

    Article  Google Scholar 

  17. Smith, K.A., Jackson, D.R., Misselbrook, T.H., Pain, B.F., Johnson, R.A.: Reduction of ammonia emission by slurry application techniques. J. Agric. Eng. Res. 77(3), 277–287 (2000)

    Article  Google Scholar 

  18. Hansen, M.N., Sommer, S.G., Madsen, N.P.: Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand. J. Environ. Qual. 32(3), 1099–1104 (2003)

    Article  Google Scholar 

  19. Huijsmans, J.F.M., Hol, J.M.G., Vermeulen, G.D.: Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 37(6), 3669–3680 (2003)

    Article  Google Scholar 

  20. EMEP/CORINAIR: Atmospheric Emission Inventory Guidebook—Group 10: Agriculture (2007)

  21. Brentrup, F., Kusters, J., Lammel, J., Kuhlmann, H.: Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5(6), 349–357 (2000)

    Article  Google Scholar 

  22. Wrest Park History, C.: Chapter 11 Environmental impacts from agriculture. Biosyst Eng 103, Supplement 1(0), 118–125 (2009)

    Google Scholar 

  23. Sitaula, B.K., Hansen, S., Sitaula, J.I.B., Bakken, L.R.: Effects of soil compaction on N2O emission in agricultural soil. Chemosph. Glob. Change Sci. 2(3–4), 367–371 (2000)

    Article  Google Scholar 

  24. Thirion, F., Chabot, F.: Impacts of heterogeneous manure spreading on nitrate lixiviation. Ecol. Futur. Bulg. J. Ecol. Sci. 8(2), 31–35 (2009)

    Google Scholar 

  25. Piron, E., Thirion, F.: Logiciel de simulation d’épandage—Principe de fonctionnement, utilisation et résultats. In: NRA Ecodefi project, p. 27 (2009)

  26. O’Sullivan, M.F., Henshall, J.K., Dickson, J.W.: A simplified method for estimating soil compaction. Soil Tillage Res. 49(4), 325–335 (1999)

    Article  Google Scholar 

  27. Brisson, N., Mary, B.: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18(5–6), 311–346 (1998)

    Article  Google Scholar 

  28. Jolivel, C.: Aqualea: guide de réalisation du diagnostic. Rapport de stage, p. 22. Arvalis-Institut du Végétal, La Chapelle Saint-Sauveur (2003)

  29. Pradel, M.: Eco-évaluation des équipements d’épandage de produits liquides et solides: indicateurs technologiques, protocoles expérimentaux et résultats d’évaluation. In: NRA Ecodefi project, p. 143 (2010)

  30. Ecodefi: Guide d’éco-conception des matériels d’épandage, p. 242. NRA project Ecodefi (2011)

  31. Pezzi, F., Rondelli, V.: Evaluation of a prototype spreader in the distribution of poultry manure. Appl. Eng. Agric. 18(3), 285–291 (2002)

    Article  Google Scholar 

  32. Kaplan, J., Chaplin, J.: Unevenness of fertilizer distribution and determination of the application rate. In: Roberts, P.C., Larson, W.E., Rust, R.H. (eds.) Precision Agriculture: Proceedings of the Fourth International Conference on Precision Agriculture, p. 7. ASA/CSSA/SSA/, Madison, WI, USA (1998)

  33. Horrell, R., Metherell, A.K., Ford, S., Doscher, C.: Fertilizer evenness—losses and costs: a study on the economic benefits of uniform applications of fertilizer. In: Proceedings of the New Zealand Grassland Association, pp. 215–220 (1999)

  34. Lutz, J.A., Jones, G.D., Hawkins, G.W., Hutcheson, T.B.: Effects of uneven spreading of fertilizer on crop yields. Agron. J. 67, 526–529 (1975)

    Article  Google Scholar 

  35. Dilz, K., Van Brakel, G.D.: Part I. Effects of Uneven Fertilizer Spreading—A Literature Review. Fertilizer Society of London, Leek (1985)

    Google Scholar 

  36. Richards, I.R.: Part II. Effects of Inaccurate Fertilizer Spreading on Crop Yield and Quality in the UK. Fertilizer Society of London, Leek (1985)

    Google Scholar 

  37. Makowski, D., Tremblay, M., Debroize, D., Laurent, F.: Epandages hétérogènes d’engrais azotes—quell impact économique et environnemental? Perspect. Agricoles 263, 56–61 (2000)

    Google Scholar 

  38. Laguë, C., Landry, H., Roberge, M.: Engineering of land application systems for livestock manure: a review. Can. Biosyst. Eng. 47, 617–628 (2005)

    Google Scholar 

  39. Agnew, J., Laguë, C., Schoenau, J., Feddes, J., Guo, H.: Effect of manure type, application rate and application method on odours from manure spreading. Can. Biosyst. Eng. 52, 619–629 (2010)

    Google Scholar 

  40. Elaoud, A., Chehaibi, S.: Soil compaction due to tractor traffic. J. Fail. Anal. Prev. 11(5), 539–545 (2011)

    Article  Google Scholar 

  41. Vitlox, O., Loyen, S.: Conséquences de la mécanisation sur la compaction du sol et l’inflitration de l’eau. Compte rendu de la journée d’étude: erosion Hydrique et Coulées boueuses en Région Wallonne, pp. 45–58 (2002)

  42. Hakansson, L., Voorhees, W.B., Riley, H.: Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil Tillage Res. 11, 239–282 (1988)

    Article  Google Scholar 

  43. Rousselet, M., Didelot, D.: Design of a new measurement bench for research and innovation in organic spreading quality—the CEmagref Organic Bench (CEMOB). In: ADEME (ed.) Cemagref, p. 28 (2007)

  44. Piron, E., Miclet, D.: Centrifugal fertiliser spreaders: a new method for their evaluation and testing. In: Proceedings n°556, p. 24. International Fertiliser Society, York, UK (2005)

  45. Piron, E., Pradel, M., Thirion, F.: Environmental evaluation of organic spreading machines—a spreading simulator. In: Colloque International “L’Europe de la fertilisation”, Rennes, France. Poster (2009)

  46. Brisson, N., Launay, M., Mary, B., Beaudoin, N.: Conceptual basis, formalisations and parameterization of the STICS crop model. Conceptual basis, formalisations and parameterization of the STICS crop model, 297 pp (2008)

  47. Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillere, J.P., Henault, C., Maraux, F., Seguin, B., Sinoquet, H.: An overview of the crop model STICS. Eur. J. Agron. 18(3–4), 309–332 (2003)

    Article  Google Scholar 

  48. Launay, M., Brisson, N.: Adaptability of the STICS model to various crops: application to sugar beet. In: Colloquium on ‘Sugar Beet Growth and Modelling’, Lille, France, 12 Sept 2003, pp. 87–94 (2003)

  49. Brisson, N., Ruget, F., Gate, P., Lorgeau, J., Nicoullaud, B., Tayot, X., Plenet, D., Jeuffroy, M.H., Bouthier, A., Ripoche, D., Mary, B., Justes, E.: STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 22(1), 69–92 (2002)

    Article  Google Scholar 

  50. Henault, C., Germon, J.C.: NEMIS, a predictive model of denitrification on the field scale. Eur. J. Soil Sci. 51(2), 257–270 (2000)

    Article  Google Scholar 

  51. Dambreville, C., Henault, C., Bizouard, F., Morvan, T., Chaussod, R., Germon, J.C.: Compared effects of long-term pig slurry applications and mineral fertilization on soil denitrification and its end products (N2O, N-2). Biol. Fertil. Soils 42(6), 490–500 (2006)

    Article  Google Scholar 

  52. Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., Munch, J.C.: Emission of N2O, N-2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol. Biochem. 38(2), 263–274 (2006)

    Article  Google Scholar 

  53. Ciarlo, E., Conti, M., Bartoloni, N., Rubio, G.: Soil N2O emissions and N2O/(N2O + N-2) ratio as affected by different fertilization practices and soil moisture. Biol. Fertil. Soils 44(7), 991–995 (2008)

    Article  Google Scholar 

  54. Adamsen, F.J., Sabey, B.R.: Ammonia volatilization from liquid digested sewage-sludge as affected by placement in soil. Soil Sci. Soc. Am. J. 51(4), 1080–1082 (1987)

    Article  Google Scholar 

  55. Beauchamp, E.G., Kidd, G.E., Thurtell, G.: Ammonia volatilization from sewage sludge applied in field. J. Environ. Qual. 7(1), 141–146 (1978)

    Article  Google Scholar 

  56. Hall, J.E., Ryden, J.C.: Current UK research into ammonia losses from sludges and slurries. In: Dam Kofoed, A., Williams, J.H., L’Hermite P. (eds.) Efficient Land Use of Sludge and Manure, pp. 180–192. Elsevier Applied Science Publishers, London (1986)

  57. King, L.D.: Mineralization and gaseous loss of nitrogen in soil applied liquid sewage sludge. J. Environ. Qual. 2(3), 356–358 (1973)

    Article  Google Scholar 

  58. Terry, R.E., Nelson, D.W., Sommers, L.E., Meyer, G.J.: Ammonia volatilization from wastewater-sludge applied to soils. J. Water Pollut. Control Fed. 50(12), 2657–2665 (1978)

    Google Scholar 

  59. Ryan, J.A., Keeney, D.R.: Ammonia volatilization from surface-applied wastewater sludge. J. Water Pollut. Control Fed. 47(2), 386–393 (1975)

    Google Scholar 

  60. Parnaudeau, V., Genermont, S., Henault, C., Farrugia, A., Robert, P., Nicolardot, B.: Measured and simulated nitrogen fluxes after field application of food-processing and municipal organic wastes. J. Environ. Qual. 38(1), 268–280 (2009)

    Article  Google Scholar 

  61. Donovan, W.C., Logan, T.J.: Factors affecting ammonia volatilization from sewage-sludge applied to soil in a laboratory study. J. Environ. Qual. 12(4), 584–590 (1983)

    Article  Google Scholar 

  62. Esteller, M.V., Martinez-Valdes, H., Garrido, S., Uribe, Q.: Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manage. (Oxford) 29(6), 1936–1944 (2009)

    Article  Google Scholar 

  63. Smith, S.R., Woods, V., Evans, T.D.: Nitrate dynamics in biosolids-treated soils. I. Influence of biosolids type and soil type. Bioresour. Technol. 66(2), 139–149 (1998)

    Article  Google Scholar 

  64. Ambus, P., Jensen, J.M., Prieme, A., Pilegaard, K., Kjoller, A.: Assessment of CH4 and N2O fluxes in a Danish beech (Fagus sylvatica) forest and an adjacent N-fertilised barley (Hordeum vulgare) field: effects of sewage sludge amendments. Nutr. Cycl. Agroecosyst. 60(1–3), 15–21 (2001)

    Article  Google Scholar 

  65. Jezierska-Tys, S., Frac, M.: CO2, N2O and NH3 emissions from two different type of soils as affected by applications of dairy sewage sludge. Int. Agrophys. 21(4), 323–328 (2007)

    Google Scholar 

  66. Scott, A., Ball, B.C., Crichton, I.J., Aitken, M.N.: Nitrous oxide and carbon dioxide emissions from grassland amended with sewage sludge. Soil Use Manag. 16(1), 36–41 (2000)

    Article  Google Scholar 

  67. Zaman, M., Matsushima, M., Chang, S.X., Inubushi, K., Nguyen, L., Goto, S., Kaneko, F., Yoneyama, T.: Nitrogen mineralization, N2O production and soil microbiological properties as affected by long-term applications of sewage sludge composts. Biol. Fertil. Soils 40(2), 101–109 (2004)

    Article  Google Scholar 

  68. Fernandes, S.A.P., Bettiol, W., Cerri, C.C., Camargo, P.: Sewage sludge effects on gas fluxes at the soil-atmosphere interface, on soil delta C-13 and on total soil carbon and nitrogen. Geoderma 125(1–2), 49–57 (2005)

    Article  Google Scholar 

  69. Chiaradia, J.J., Chiba, M.K., de Andrade, C.A., do Carmo, J.B., de Oliveira, C., Lavorenti, A.: CO2, CH4 and N2O fluxes in an Ultisol treated with sewage sludge and cultivated with castor bean. Rev. Bras. Cienc. Solo 33(6), 1863–1870 (2009)

    Article  Google Scholar 

  70. Beare, M.H., Gregorich, E.G., St-Georges, P.: Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem. 41(3), 611–621 (2009)

    Article  Google Scholar 

  71. Thomas, S.M., Beare, M.H., Francis, G.S., Barlow, H.E., Hedderley, D.I.: Effects of tillage, simulated cattle grazing and soil moisture on N2O emissions from a winter forage crop. Plant Soil 309(1–2), 131–145 (2008)

    Article  Google Scholar 

  72. Robinson, M.B., Roper, H.: Volatilisation of nitrogen from land applied biosolids. Aust. J. Soil Res. 41(4), 711–716 (2003)

    Article  Google Scholar 

  73. European standard EN 13080: Agricultural machinery—manure spreaders—environemental protection—requirements and test methods, 23 pp (2003)

Download references

Acknowledgments

This work is issued from the ECODEFI (Ecodesign and development of assessment methods for innovative spreading technologies) project. It has been supported by the French National Research Agency—program Ecotechnologies and sustainable development. The authors kindly thanks Pr. Véronique Bellon-Maurel, Dr. Catherine Macombe and Emmanuel Piron both from Irstea research institute for the internal review of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilys Pradel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradel, M., Pacaud, T. & Cariolle, M. Valorization of Organic Wastes Through Agricultural Fertilization: Coupling Models to Assess the Effects of Spreader Performances on Nitrogenous Emissions and Related Environmental Impacts. Waste Biomass Valor 4, 851–872 (2013). https://doi.org/10.1007/s12649-012-9162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9162-2

Keywords

Navigation