Skip to main content
Log in

Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L.

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Several human activities such as mining, smelting, or transportations lead to trace metal pollution in soil. The presence of these pollutants can represent environmental and organism health risks. Phytoextraction can be used to remediate trace metal–contaminated soils. It uses the plants’ ability to remove trace metals from soil and to accumulate them in their shoots, which can then be harvested. We studied the spontaneous vegetation growing on a brownfield located in France. The use of native plants is interesting since spontaneous vegetation is already well adapted to the site’s environmental conditions leading to a better survival and growth than non-native plants. Ten native plant species were sampled, and the Cr, Cu, Cd, Ni, Pb, and Zn concentrations present in their shoots were measured. In order to determine the plant’s capacity to extract trace metals from the soil, the bioconcentration factor (BCF) was calculated for each plant and trace metal. Plants with a BCF greater than 1 are able to accumulate trace metals in their shoots and could be a good candidate to be used in phytoextraction. Results underscored one new accumulator plant for Zn, Tussilago farfara L., with a BCF value of 3.069. No hyperaccumulator was found among the other sampled plants. Our preliminary study showed that T. farfara is able to accumulate zinc in its shoots. Moreover, this native plant is a pioneer species able to quickly colonize various habitats by vegetative multiplication. That is why T. farfara  L. could be interesting for zinc phytoextraction and could be worth further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFNOR (1999) NF X31-130. Soil quality - Chemical methods - Determination of cationic exchange capacity (CEC) and extractible cations

  • AFNOR (2003) NF X31-107. Soil quality - Particle size determination by sedimentation - Pipette method

  • AFNOR (1998) NF ISO 13878. Soil quality. Determination of total nitrogen content by dry combustion (“elemental analysis”).

  • AFNOR (1995a) NF ISO 10694. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis).

  • AFNOR (2014) NF EN ISO 10693. Soil quality - Determination of carbonate content - Volumetric method

  • AFNOR (2005) NF ISO 10390. Soil quality - Détermination of pH

  • AFNOR (1995b) NF ISO 11466. Soil quality. Extraction of trace elements soluble in aqua regia.

  • AFNOR (2002) NF ISO 14870. Soil quality - Extraction of trace elements by buffered DTPA solution

  • Aihemaiti A, Jiang J, Li D, Liu N, Yang M, Meng Y, Zou Q (2018) The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J Environ Manage 222:216–226. https://doi.org/10.1016/j.jenvman.2018.05.081

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Baize D (2000) Guide des analyses en pédologie: choix, expression, présentation, interprétation, 2e éd. rev. et augm. Institut national de la recherche agronomique, Paris

  • Baize D, Gilkes RJ, Prakongkep N (2010) Concentrations of trace elements in soils: the three keys. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, pp 1–6

    Google Scholar 

  • Baize D, Sterckeman T (2001) Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264:127–139

    Article  CAS  Google Scholar 

  • Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81-126. Bull Env Contam Toxicol 64:489–496

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders -strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Bartke S, Martinát S, Klusáček P, Pizzol L, Alexandrescu F, Frantál B, Critto A, Zabeo A (2016) Targeted selection of brownfields from portfolios for sustainable regeneration: user experiences from five cases testing the Timbre Brownfield Prioritization Tool. J Environ Manage 184:94–107. https://doi.org/10.1016/j.jenvman.2016.07.037

    Article  Google Scholar 

  • Boechat CL, Pistóia VC, Gianelo C, Camargo FA d O (2016) Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Environ Sci Pollut Res 23:2371–2380. https://doi.org/10.1007/s11356-015-5342-5

    Article  CAS  Google Scholar 

  • Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach J 2:l–67

    Google Scholar 

  • Darmendrail D (2000) Fonds géochimique naturel–État des connaissances à l’échelle nationale. INRA/BRGM. BRGM/RP-50158-FR, juin 2000. Étude réalisée dans le cadre des actions de Service public du BRGM 99-F-269

  • Dazy M, Béraud E, Cotelle S, Grévilliot F, Férard JF, Masfaraud JF (2009) Changes in plant communities along soil pollution gradients: responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere 77:376–383. https://doi.org/10.1016/j.chemosphere.2009.07.021

    Article  CAS  Google Scholar 

  • Dazy M, Jung V, Férard J-F, Masfaraud J-F (2008) Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere 74:57–63. https://doi.org/10.1016/j.chemosphere.2008.09.014

    Article  CAS  Google Scholar 

  • Douay F, Pruvot C, Roussel H et al (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260. https://doi.org/10.1007/s11270-007-9541-7

    Article  CAS  Google Scholar 

  • Dzierżanowski K, Gawroński SW (2012) Heavy metal concentration in plants growing on the vicinity of railroad tracks: a pilot study. Chall Mod Technol 3

  • Evangelou MW, Hockmann K, Pokharel R, Jakob A, Schulin R (2012) Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils. J Environ Manage 108:102–107

    Article  CAS  Google Scholar 

  • Grison CM, Mazel M, Sellini A, Escande V, Biton J, Grison C (2015) The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ Sci Pollut Res 22:5667–5676. https://doi.org/10.1007/s11356-014-3605-1

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009

    Article  CAS  Google Scholar 

  • Heckenroth A, Rabier J, Dutoit T, Torre F, Prudent P, Laffont-Schwob I (2016) Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: tools for a non-destructive and integrative approach. J Environ Manage 183:850–863. https://doi.org/10.1016/j.jenvman.2016.09.029

    Article  CAS  Google Scholar 

  • Innes, RJ (2011) Tussilago farfara. In : Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available : https://www.fs.fed.us/database/feis/plants/forb/tusfar/all.html. Accessed 2 October 2019.

  • Islam MS, Ahmed MK, Md H-A-M, Raknuzzaman M (2015) The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol Environ Saf 122:462–469. https://doi.org/10.1016/j.ecoenv.2015.09.022

    Article  CAS  Google Scholar 

  • Jones JB (2012) Plant nutrition and soil fertility manual, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl Geochem 11:53–59. https://doi.org/10.1016/0883-2927(95)00075-5

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M (2015) Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils Sediments 17:1310–1320. https://doi.org/10.1007/s11368-015-1260-x

    Article  CAS  Google Scholar 

  • Mathieu C, Pieltain F (2003) Analyse chimique des sols: méthodes choisies. Éd. Tec & doc, Paris

    Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. https://doi.org/10.1016/S0958-1669(03)00060-0

  • Muratet A, Muratet M, Pellaton M (2017) Flore des friches urbaines du nord de la France et des régions voisines

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • NRCS Soils (2019) Soil texture calculator | NRCS Soils. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid = nrcs142p2_054167. Accessed 21 Sep 2018

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manage 143:123–134. https://doi.org/10.1016/j.jenvman.2014.04.027

    Article  CAS  Google Scholar 

  • Oliver L, Ferber U, Grimski D, et al (2005) The scale and nature of European brownfields. In: CABERNET 2005-International Conference on Managing Urban Land LQM Ltd, Nottingham, UK, Belfast, Northern Ireland, UK

  • Oyuela M, Fernández W, Sarmiento M (2017) Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands — a review. Chemosphere 168:1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.075

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. https://doi.org/10.1007/s11270-007-9401-5

    Article  CAS  Google Scholar 

  • Pfeiffer T, Günzel C, Frey W (2008) Clonal reproduction, vegetative multiplication and habitat colonisation in Tussilago farfara (Asteraceae): a combined morpho-ecological and molecular study. Flora - Morphol Distrib Funct Ecol Plants 203:281–291. https://doi.org/10.1016/j.flora.2007.02.008

    Article  Google Scholar 

  • Rizzo E, Pesce M, Pizzol L et al (2015) Brownfield regeneration in Europe: identifying stakeholder perceptions, concerns, attitudes and information needs. Land Use Policy 48:437–453. https://doi.org/10.1016/j.landusepol.2015.06.012

    Article  Google Scholar 

  • Robinson BH, Bischofberger S, Stoll A, Schroer D, Furrer G, Roulier S, Gruenwald A, Attinger W, Schulin R (2008) Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ Pollut 153:668–676. https://doi.org/10.1016/j.envpol.2007.08.034

    Article  CAS  Google Scholar 

  • Rocco C, Agrelli D, Coppola I, González I, Adamo P (2018) Native plant colonization of brownfield soil and sludges: effects on substrate properties and pollutant mobility. J Soils Sediments 18:2282–2291. https://doi.org/10.1007/s11368-017-1850-x

    Article  CAS  Google Scholar 

  • Saha N, Mollah MZI, Alam MF, Safiur Rahman M (2016) Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70:110–118. https://doi.org/10.1016/j.foodcont.2016.05.040

    Article  CAS  Google Scholar 

  • Schauer T, Caspari C (2008) Guide Delachaux des plantes par la couleur: 1150 fleurs, graminées, arbres et arbustes. Delachaux et Niestlé, Paris

    Google Scholar 

  • Soltner D (1996) Les bases de la production végétale: le sol et son amélioration

  • Stefanowicz AM, Kapusta P, Błońska A et al (2015) Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecol Eng 83:328–337. https://doi.org/10.1016/j.ecoleng.2015.06.034

    Article  Google Scholar 

  • Techer D, Martinez-Chois C, Laval-Gilly P et al (2012) Assessment of Miscanthus×giganteus for rhizoremediation of long term PAH contaminated soils. Appl Soil Ecol 62:42–49. https://doi.org/10.1016/j.apsoil.2012.07.009

    Article  Google Scholar 

  • Wu QT, Wei ZB, Ouyang Y (2007) Phytoextraction of metal-contaminated soil by Sedum alfredii H: effects of chelator and co-planting. Water Air Soil Pollut 180:131–139. https://doi.org/10.1007/s11270-006-9256-1

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Marine Sauton, Pascale Sauton, and Seanna Campista (San Jose, California) for their English revision. We would like to thank Romain Goudon for performing ICP analyses.

Funding

The authors would like to thank Communauté d’Agglomérations du Val de Fensch, Portes de France-Thionville, Ville de Thionville, Syndicat intercommunal de Curage de Cattenom et environs, and Communauté de Communes Cattenom et Environs for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Wechtler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wechtler, L., Laval-Gilly, P., Bianconi, O. et al. Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L.. Environ Sci Pollut Res 26, 36055–36062 (2019). https://doi.org/10.1007/s11356-019-06892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06892-3

Keywords

Navigation