Skip to main content

Advertisement

Log in

The potential applications of picotechnology in biomedical and environmental sciences

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Picotechnology development in vast disciplines is mainly attributed to the research and development (R and D) on nanotechnology. Being a parent technology, nanotechnology is the cornerstone of picotechnology. Like nanotechnology, the reference standard for picotechnology is nature, the cellular and subcellular functioning. Some studies have highlighted that the functional margin of similar type of molecules at picoscale (10−12) goes higher than at nanoscale (10−9). In this review, the potential applications of picotechnology have been evaluated especially in the disciplines of biomedical and environmental sciences. Extended surface area and improved electrical, chemical, optical, and mechanical properties make picotechnological products even better than nanomaterials. The fundamental objective of this study is to bring the attention of the scientific world towards the picoscale interventions and to highlight the wide scope of picotechnology as a newly emerging technology with applications in numerous sectors. Picotechnology has made it possible to measure very small structure in advance biomedical and environmental sciences studies. Adequate developments in picotechnology will certainly change human lives in near future because it will make possible for the research world to dive into systems and structures on picoscale. It will render a platform through which explorers can travel into ultra-small areas, which will lead to the creation of new dimensions as well as new opportunities. Eventually, in future, the picotechnology will become smaller enough to give birth to femtotechnology (10−15) in real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BS:

Biotin-streptavidin

CNTs:

Carbon nanotubes

Gold-PPs:

Gold picoparticles

EU:

Electroacupuncture

MTs:

Microtubules

PM:

Picomolecules

References

  • Ajdary M, Ghahnavieh MZ, Naghsh N (2015) Sub-chronic toxicity of gold nanoparticles in male mice. Adv Biomed Rese 4:67. https://doi.org/10.4103/2277-9175.153890

    Article  CAS  Google Scholar 

  • Alpaslan E, Webster TJ (2014) Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies. Int J Nanomedicine 9:7–12. https://doi.org/10.2147/IJN.S58384

    Article  CAS  Google Scholar 

  • Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R (2018) Recent advances in nanoparticle-based cancer drug and gene delivery. In Adv Cancer Res 137: 115-170. https://doi.org/10.1016/bs.acr.2017.11.003

    Google Scholar 

  • Anitua E, Sánchez M, Orive G, Andia I (2008) Delivering growth factors for therapeutics. Trends Pharmacological Sci 29:37–41

    Article  CAS  Google Scholar 

  • Baier RE, Meyer AE, Natiella JR, Natiella RR, Carter JM (1984) Surface properties determine bioadhesive outcomes: methods and results. J biomed materials res 18(4):337–355. https://doi.org/10.1016/j.tips.2007.10.010

    Article  CAS  Google Scholar 

  • Beigi MN, Shamlouei HR, Omidi M. Jalalvandi E (2017) Effect of Doped Transition Metal Atoms on Structure and Nonlinear Optical Properties of Decaborane. J Electro Material 46:6347. https://doi.org/10.1007/s11664-017-5654-y

    Article  CAS  Google Scholar 

  • Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature (7172):1100. https://doi.org/10.1038/nature06386

    Article  CAS  Google Scholar 

  • Blaine Delton (2018) Pico technology: the next fronterier?, https://www.fuelsandlubes.com/fli-article/pico-technology-the-next-frontier/, Accessed on December 2, 2018

  • Bolonkin A (2009a) Converting of matter to nuclear energy by AB-Generator. Amer J Engineer Appl Sci 2:683–693. https://doi.org/10.3844/ajeassp.2009.683.693

    Article  Google Scholar 

  • Connor DM, Broome AM (2018) Gold nanoparticles for the delivery of cancer therapeutics. Adv Cancer Res 13:163–184. https://doi.org/10.1016/bs.acr.2018.05.001

    Article  Google Scholar 

  • Desai K, Kit K, Li J, Davidson PM, Zivanovic S, Meyer H (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669. https://doi.org/10.1016/j.polymer.2009.05.058

    Article  CAS  Google Scholar 

  • Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N (2008) Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 180:729–737. https://doi.org/10.1083/jcb.200707203.

    Article  CAS  Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nature Nanotechn 6:13. https://doi.org/10.1038/nnano.2010.246

    Article  CAS  Google Scholar 

  • Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechn 10(1):31

    Article  Google Scholar 

  • Ferreira ADB, Novoa PR, Marques AT (2016) Multifunctional material systems: a state-of-the-art review. Composite Struct 151:3–35. https://doi.org/10.1016/j.compstruct.2016.01.028

    Article  Google Scholar 

  • Garanina A, Kireev I, Zhironkina O, Strelkova O, Shakhov A, Alieva I, Agafonov V (2019) Long-term live cells observation of internalized fluorescent Fe@ C nanoparticles in constant magnetic field. J Nanobiotechn 17(1):1–10. https://doi.org/10.1186/s12951-019-0463-5

    Article  Google Scholar 

  • Hallab NJ, Bundy KJ, O’Connor K, Clack R, Moses RL (1995) Cell adhesion to biomaterial: correlations between surface charge, surface roughness, absorbed protein and cell morphology. J Long Term Eff Med Implants 5:209–231

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    Article  CAS  Google Scholar 

  • Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. ChemSoci Revie 42:2824–2860

    CAS  Google Scholar 

  • Kumar D (2018) Carbon nanomaterials based nanocomposite as emerging field for pollution control. Nanotechn Environ Sci:125–152

  • Kumar P, Tripathi L (2014) Challenges in pain assessment: pain intensity scales. Indian J Pain 28:61–70

    Article  Google Scholar 

  • Kumar A, Gupta K, Dixit S, Mishra K, Srivastava S (2018) A review on positive and negative impacts of nanotechnology in agriculture. Int J Environ Sci Technol:1–10

  • Lai LC, Qian XIANG, Ming CW, Jin FANG, Na SN, Peng ZX, Dong JX (2018) Subchronic oral toxicity of silica nanoparticles and silica microparticles in rats. Biomed Environ Sci 31(3):197–207. https://doi.org/10.3967/bes2018.025

    Article  Google Scholar 

  • Masciangioli T, Zhang W (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102–108

    Article  Google Scholar 

  • Mohammadpour M, Jabbarvand M, Hashemi H, Delrish E (2015) Prophylactic effect of topical silica nanoparticles as a novel antineovascularization agent for inhibiting corneal neovascularization following chemical burn. Adv Biom Res 4:124

    Article  Google Scholar 

  • Mohraz M, Golbabaei F, Yu I, Mansournia M, Zadeh A, Dehghan S (2019) Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications. Int J Environ Sci Technol:681–694. https://doi.org/10.1007/s1376

  • Mostafavi E, Soltantabar P, Webster TJ (2019) Nanotechnology and picotechnology: a new arena for translational medicine. Biomat Trans Med:191–212

  • Naik P, Gamanagatti R, Meti J, Telkar N (2017) Importance of nano-technology in different discipline. Inte J Technol 7:56–68

    Article  Google Scholar 

  • Negahdary M, Chelongar R, Zadeh SK, Ajdary M (2015) The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv Biomed Res 4:69. https://doi.org/10.4103/2277-9175.153893

    Article  CAS  Google Scholar 

  • Nitkin PI, Gorshkov BG, Nitkin EP, Ksnevich TI (2005) Sensors and actuators B: Cheml 111-112(11):500–504

    Google Scholar 

  • Nurhidayah D, Maruf A, Gregersen H (2018) Targeted polyethylenimine/(p53 plasmid) nano-complexes for potential antitumor ons. Nanotechn

    Google Scholar 

  • Prathyusha K, Reddy JGM, Venkataswamy M, Ramesh A (2018) Pico technology: instruments used and applications in pharmaceutical field. Res J Pharm Dos Forms Technol 10:34

    Article  Google Scholar 

  • Pummakarnchana O, Tripathi N, Dutta J (2005) Air pollution monitoring and GIS modeling: a new use of nanotechnology based solid state gas sensors. Sci Tecnolo Adv Materi 6:251–255. https://doi.org/10.1016/j.stam.2005.02.003

    Article  CAS  Google Scholar 

  • Ramaseshan R, Sundarrajan S, Liu Y, Barhate R, Lala NL, Ramakrishna S (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnol 17:2947–2953

    Article  CAS  Google Scholar 

  • Rosa AL, De Oliveira PT, Beloti MM (2008) Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Rev Medl Dev 5:719–728

    Article  Google Scholar 

  • Sankar TV, Patel D, Samuel RS, Amaranath G (2018) Reducing the impacts of greenhouse gases. In: Sridharan K (ed) Emerging trends of nanotechnology in environment and sustainability. Springer Briefs in Environmental Science. https://doi.org/10.1007/978-3-319-71327-4_2

    Google Scholar 

  • Schakenraad K, Biebricher AS, Sebregts M, Ten Bensel B, Peterman EJG, Wuite GJL, Heller I, Storm C, van der Schoot P (2017) Hyperstretching DNA. Nat Commun 8:2197. https://doi.org/10.1038/s41467-017-02396-1

  • Shalmi M, Kibble JD, Day JP, Christensen P, Atherton JC (1994) Improved analysis of picomole quantities of lithium, sodium, and potassium in biological fluids. Amer J Physiol 267:695–701. https://doi.org/10.1152/ajprenal.1994.267.4.F695

    Article  Google Scholar 

  • Sharma V (2016) Nanotechnology and its applications in energy sector. Int J Technol 6(2):1–8

    Google Scholar 

  • Sharma PC, Sharma SV, Sharma A, Suresh B (2008) 3D-QSAR CoMFA study of some heteroarylpyrroles as possible anticandida agents. Ind J Pharm Sci 70:154–158. https://doi.org/10.4103/0250-474X.41447

    Article  CAS  Google Scholar 

  • Sharma R, Sharma A, Chen CJ (2009) Emerging trends of nanotechnology towards picotechnology: energy and biomolecules. Nature Preced:1–7. https://doi.org/10.1038/npre.2010.4525.1

  • Shriniwas B, Sharma R, Sharma A (2009) Extended applications of picomolar technology to measure immunoactive biomarkers. In proceedings of nanotech NSTI Conference. Houston, USA

  • Singh A, Prasad SM (2017) Nanotechnology and its role in agro-ecosystem: a strategic perspective. Int J Environ Sci Technol 14(10):2277–2300

    Article  Google Scholar 

  • Tang S, Cao Z (2012) Adsorption and dissociation of ammonia on graphene oxides: a first-principles study. J Phys Chem 116:8778–8791

    CAS  Google Scholar 

  • The invasion of picoseconds, Michel H. Gold MD, Practical dermatology, (2018) https://www.practicaldermatology.com, Accessed on December 2, 2018

  • Thompson JW, Cummings M (2008) Investigating the safety of electroacupuncture with a Picoscope™. Acup Medi 26:133–139

    Article  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:32–34

    Article  Google Scholar 

  • Webster T, Favi P (2015) Using nanotechnology and picotechnology to increase tissue growth and reduce bacterial infections. FASEB J 29(1_supplement):208-1

    Google Scholar 

  • Xu J, Tu H, Ao Z, Chen Y, Danehy R, Guo F (2019) Acoustic disruption of tumor endothelium and on-demand drug delivery for cancer chemotherapy. Nanotechnol. 15:154–1701. https://doi.org/10.1088/1361-6528/aafe4e. https://doi.org/10.1088/1361-6528/aafe4e

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafiz Mohkum Hammad or Shah Fahad.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, M.Z., Hammad, H.M., Abbas, F. et al. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27, 133–142 (2020). https://doi.org/10.1007/s11356-019-06554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06554-4

Keywords

Navigation