Skip to main content

Advertisement

Log in

Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For human health and safety, it is of great importance to develop innovative materials with a vast capacity for powerful removal of radioactive ions from aqueous solutions. Prussian blue functionalized sugarcane bagasse (PB-SCB) was successfully prepared for the efficient elimination of radioactive cesium (137Cs) using a nontoxic, environmentally friendly, and costless method. The prepared renewable material was characterized using different techniques to emphasize morphology, functional groups, crystal structure, and the adsorption process. The adsorption of Cs(I) was better fitted to the pseudo-second-order model than pseudo-first-order model which revealed a chemical adsorption mechanism. The experimental isotherm results were best illustrated by the Freundlich model (R2 = 0.98). Besides, the obtained values for the thermodynamic parameters indicating that the adsorption process was endothermic and spontaneous in nature. In addition to demonstrating high adsorption capacity for Cs ion removal (56.7 mg/g at 30 °C), PB-SCB might consider being an efficient and cost-effective adsorbent for the decontamination of cesium, where an estimated cost analysis revealed that the expenditure for the removal of 1000 mg/L cesium from alkaline radioactive wastewater is likely to be US$0.12.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel-Galil EA, Moloukhia H, Abdel-Khalik M, Mahrous SS (2018) Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions. Appl Radiat Isotopes 140:363–373

    Article  CAS  Google Scholar 

  • Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602

    Article  CAS  Google Scholar 

  • Alipour D, Keshtkar AR, Moosavian MA (2016) Adsorption of thorium (IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems. Appl Surf Sci 366:19–29

    Article  CAS  Google Scholar 

  • Ararem A, Bouras O, Arbaoui F (2011) Adsorption of caesium from aqueous solution on binary mixture of iron pillared layered montmorillonite and goethite. Chem Eng J 172(1):230–236

    Article  CAS  Google Scholar 

  • Attallah MF, Borai EH, Allan KF (2009) Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 51:622–627

    Article  CAS  Google Scholar 

  • Attallah MF, Borai EH, Hilal MA, Shehata FA, Abo-Aly MM (2011) Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J Hazard Mater 195:73–81

    Article  CAS  Google Scholar 

  • Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186(2–3):1343–1350

    Article  CAS  Google Scholar 

  • Basu H, Saha S, Pimple MV, Singhal RK (2018) Graphene-Prussian blue nanocomposite impregnated in alginate for efficient removal of cesium from aquatic environment. J Environ Chem Eng 6(4):4399–4407

    Article  CAS  Google Scholar 

  • Borai EH, Hilal MA, Attallah MF, Shehata FA (2008) Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim Acta 96:441–447

    Article  CAS  Google Scholar 

  • Borra CR, Mermans J, Blanpain B, Pontikes Y, Binnemans K, Gerven TV (2016) Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Miner Eng 92:151–159

    Article  CAS  Google Scholar 

  • Calarese E (2011) Improving the scientific foundations for estimating health risks from the Fukushima incident. Proc Natl Acad Sci U S A 108(49):19447–19448

    Article  Google Scholar 

  • Chang S, Chang L, Han W, Li Z, Dai Y, Zhang H (2018) In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanal Nucl Chem 316(1):209–219

    Article  CAS  Google Scholar 

  • Chen JH, Li GP, Liu QL, Ni JC, Wu WB, Lin JM (2010) Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chem Eng J 165:465–473

    Article  CAS  Google Scholar 

  • Cho E, Kim J, Park CW, Lee K, Lee TS (2018) Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions. J Hazard Mater 360:243–249

    Article  CAS  Google Scholar 

  • Dalvand A, Gholami M, Joneidi A, Mahmoodi NM (2011) Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean-Soil Air Water 39(7):665–672

    Article  CAS  Google Scholar 

  • Ding N, Kanatzidis MG (2010) Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nat Chem 2:187–191

    Article  CAS  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) Equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR 55:331–333

    Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107

    Google Scholar 

  • Igberase E, Osifo P (2015) Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. J Ind Eng Chem 26:340–347

    Article  CAS  Google Scholar 

  • Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawa T, Kurihara M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton T 42(45):16049–16055

    Article  CAS  Google Scholar 

  • Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860

    Article  CAS  Google Scholar 

  • Jang SC, Haldorai Y, Lee GW, Hwang SK, Han YK, Roh C, Huh YS (2015) Porous three-dimensional graphene foam/prussian blue composite for efficient removal of radioactive 137Cs. Sci Rep 5:17510

    Article  CAS  Google Scholar 

  • Jr ERN (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  Google Scholar 

  • Karkeh-abadi F, Saber-Samandari S, Saber-Samandari S (2016) The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions. J Hazard Mater 312:224–233

    Article  CAS  Google Scholar 

  • Kawamoto T, Tanaka H, Watanabe H, Sugiyama Y, Hattori T, Matsuzaki S, Shibaba M (2012) Granular adsorbent for r-Cs with inorganic binder. Patent:JPA2012–J250904

  • Kim H, Kim M, Kim W, Lee W, Kim S (2018) Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2. J Hazard Mater 357:449–456

    Article  CAS  Google Scholar 

  • Kumar M, Tripathi BP, Shahi VK (2009) Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd (II) from wastewater. J Hazard Mater 172(2–3):1041–1048

    Article  CAS  Google Scholar 

  • Kurniawan A, Kosasih AN, Febrianto J, Ju YH, Sunarso J, Indraswati N, Ismadji S (2011) Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: equilibrium, kinetics, thermodynamics and mechanism. Chem Eng J 172:158–166

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  • Li G, Wang M, Chen X, Li X (2017) Adsorption performance for the removal of Cu (II) on the ammonium acetate modified sugarcane bagasse. Nat Env & Poll Tech 16(3):843–848

    CAS  Google Scholar 

  • Liu X, Zhang L (2015) Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technol 277:112–119

    Article  CAS  Google Scholar 

  • Long H, Wu P, Zhu N (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244

    Article  CAS  Google Scholar 

  • Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interface Sci 428:295–301

    Article  CAS  Google Scholar 

  • Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, northern Greece due to the Fukushima nuclear accident. J Environ Radioact 102:796–797

    Article  CAS  Google Scholar 

  • Mansy MS, Hassan RS, Selim YT, Kenawy SH (2017) Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+154Eu from low-level radioactive waste. Appl Radiat Isotopes 130:198–205

    Article  CAS  Google Scholar 

  • Metwally SS, El-Sherief EA, Mekhamer HS (2019) Fixed-bed column for the removal of cesium, strontium, and lead ions from aqueous solutions using brick kiln waste. Sep Sci Technol:1–13

  • Mihara Y, Sikder Md T, Yamagishi H, Sasaki T, Kurasaki M, Itoh S, Tanaka S (2016) Adsorption kinetic model of alginate gel beads synthesized micro particle-Prussian blue to remove cesium from water. J Water Process Eng 10:9–19

    Article  Google Scholar 

  • Ming-hua T, Yi-fen G, Cheng-yao S, Chang-qing Y, De-chang W (1988) Measurement of internal contamination with radioactive caesium released from the Chernobyl accident and enhanced elimination by Prussian blue. J Radiol Prot 8(1):25–28

    Article  Google Scholar 

  • Neroda AS, Mishukov VF, Goryachev VA, Simonenkov DV, Goncharova AA (2014) Radioactive isotopes in atmospheric aerosols over Russia and the sea of Japan following nuclear accident at Fukushima Nr. 1 Daiichi Nuclear Power Station in March 2001. Environ Sci Pollut Res 21:5669–5677

    Article  CAS  Google Scholar 

  • Noor NM, Othman R, Mubarak NM, Abdullah EC (2017) Agricultural biomass-derived magnetic adsorbents: preparation and application for heavy metals removal. J Taiwan Inst Chem E 78:168–177

    Article  CAS  Google Scholar 

  • Oliveira AR, Hunt JG, Valverde NJ, Brandao-Mello CE, Farina R (1991) Medical and related aspects of the Goiania accident: an overview. Health Phys 60(1):17–24

    Article  CAS  Google Scholar 

  • Parajuli D, Takahashi A, Noguchi H, Kitajima A, Tanaka H, Takasaki M, Yoshino K, Kawamoto T (2016) Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chem Eng J 283:1322–1328

    Article  CAS  Google Scholar 

  • Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohyd Polym 137:402–409

    Article  CAS  Google Scholar 

  • Saad M, Tahir H, Ali D (2017) Green synthesis of Ag-Cr-Ac nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using response surface methodology. Ultrason Sonochem 38:197–213

    Article  CAS  Google Scholar 

  • Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231

    Article  CAS  Google Scholar 

  • Su S, Liu Q, Liu J, Zhang H, Li R, Jing X, Wang J (2018) Functionalized sugarcane bagasse for U(VI) adsorption from acid and alkaline conditions. Sci Rep 8(1):793–802

    Article  CAS  Google Scholar 

  • Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1698

    Article  Google Scholar 

  • Thompson KA, Shimabuku KK, Kearns JP, Knappe DRU, Summers RS, Cook SM (2016) Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ Sci Technol 50(20):11253–11262

    Article  CAS  Google Scholar 

  • Vincent T, Taulemesse JM, Dauvergne A, Chanut T, Testa F, Guibal E (2014) Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydr Polym 99:517–526

    Article  CAS  Google Scholar 

  • Vincent C, Barre Y, Vincent T, Taulemesse JM, Robitzer M, Guibal E (2015) Chitin-Prussian blue sponges for Cs(I) recovery: from synthesis to application in the treatment of accidental dumping of metal-bearing solution. J Hazard Mater 287:171–179

    Article  CAS  Google Scholar 

  • Vipin AK, Hu B, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258:93–101

    Article  CAS  Google Scholar 

  • Wang K, Ma H, Pu S, Yan C, Wang M, Yu J, Wang X, Chu W, Zinchenko A (2019) Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J Hazard Mater 362:160–169

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  • Yang H, Li H, Zhai J, Sun L, Zhao Y, Yu H (2014) Magnetic Prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246:10–19

    Article  CAS  Google Scholar 

  • Yang H, Li H, Zhai J, Yu H (2015) In situ growth of Prussian blue nanocrystal within Fe3+ crosslinking PAA resin for radiocesium highly efficient and rapid separation from water. Chem Eng J 277:40–47

    Article  CAS  Google Scholar 

  • Yu H, Hu J, Liu Z, Ju X, Xie R, Wang W, Chu L (2017a) Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J Hazard Mater 323:632–640

    Article  CAS  Google Scholar 

  • Yu J, Xiong W, Zhu J, Chen J, Chi R (2017b) Removal of Congo red from aqueous solution by adsorption onto different amine compounds modified sugarcane bagasse. Clean Techn Environ Policy 19(2):517–525

    Article  CAS  Google Scholar 

  • Yuh-Shan H, Gordon M (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

  • Zheng X, Dou J, Yuan J, Qin W, Hong X, Ding A (2017) Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. J Environ Sci 56:12–24

    Article  Google Scholar 

  • Zong Y, Zhang Y, Lin X, Ye D, Luo X, Wang J (2017) Preparation of a novel microsphere adsorbent of Prussian blue capsulated in carboxymethyl cellulose sodium for Cs (I) removal from contaminated water. J Radioanal Nucl Chem 311(3):1577–1591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center for kind cooperation and help in providing necessary laboratory facilities to carry out this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohamed Shahr El-Din.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PB-SCB nano-adsorbent was facilely synthesized by a simple eco-friendly method.

• PB-SCB exhibited a maximum adsorption capacity of 56.7 mg/g for Cs removal from radioactive liquid waste.

• The Cs+ adsorption by PB-SCB was governed by both chemisorption and physisorption mechanisms.

• PB-SCB demonstrated enhanced adsorption toward cesium in the presence of competing cations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Din, A.M.S., Monir, T. & Sayed, M.A. Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ Sci Pollut Res 26, 25550–25563 (2019). https://doi.org/10.1007/s11356-019-05851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05851-2

Keywords

Navigation