Skip to main content
Log in

Dryland cyanobacterial exopolysaccharides show protection against acid deposition damage

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil surface-dwelling cyanobacteria constitute an important part of the dryland ecosystem. The exopolysaccharide (EPS) matrix they establish plays multiple roles in helping cells cope with harsh environments and also improves soil physicochemical properties. Anthropogenic atmospheric nitrogen or sulfur depositions have arisen as an important environmental change in drylands. The acid moisture derived from the depositions will be absorbed by cyanobacterial EPS matrix and thus may pose a threat to cells. In this communication, we evaluated this potential impact in a dryland cyanobacterium, Nostoc flagelliforme, which is a representative polysaccharide-rich species and shows remarkable resistance to desiccation stress. A strong and resilient pH buffering property was found for the EPS matrix, mainly of the polysaccharide’s role, and this could protect the cells from acid damage of pH 4–6, a general acidity range of rainwater in the world. Unlike in acid aquatic environments, terrestrial xeric environments ensure N. flagelliforme unlikely to undertake lasting severe acidification. Thus, protection of the EPS matrix for dryland cyanobacteria would be conducive to sustain their growth and ecological roles in face of atmospheric acid pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adessi A, Cruz de Carvalho R, De Phillippis R, Branquinho C, Marques da Silva J (2018) Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol Biochem 116:67–69

    Article  CAS  Google Scholar 

  • Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments: a review. J Arid Environ 65:572–590

    Article  Google Scholar 

  • Belnap J, Phillips SL, Flint SD, Money J, Caldwell MM (2008) Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions. Glob Chang Biol 14:670–686

    Article  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    Article  CAS  Google Scholar 

  • Cui LJ, Xu HY, Zhu ZX, Gao X (2017) The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biol Open 6:1329–1335

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27

    Article  CAS  Google Scholar 

  • Gao K (1998) Chinese studies on the edible blue green alga Nostoc flagelliforme: a review. J Appl Phycol 10:37–49

    Article  Google Scholar 

  • Gao K, Zou D (2001) Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium Nostoc flagelliforme (Cyanophyceae). J Phycol 37:768–771

    Article  CAS  Google Scholar 

  • Gao L, Pan X, Zhang D, Mu S, Lee DJ, Halike U (2015) Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res 69:51–58

    Article  CAS  Google Scholar 

  • Gao X (2017) Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb Ecol 73:255–258

    Article  CAS  Google Scholar 

  • Gao X, Xu H, Ye S, Liang W (2016) A proposal on the restoration of Nostoc flagelliforme for sustainable improvement in the ecology of arid steppes in China. Environments 3:14

    Article  Google Scholar 

  • Gao X, Yang Y, Ai Y, Luo H, Qiu B (2014) Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers. Food Chem 143:307–312

    Article  CAS  Google Scholar 

  • Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL et al (2016) Key ecological responses to nitrogen are altered by climate change. Nat Clim Chang 6:836–843

    Article  CAS  Google Scholar 

  • Hagerthey SE, Louda JW, Mongkronsri P (2006) Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. J Phycol 42:1125–1136

    Article  CAS  Google Scholar 

  • Hao L, Li J, Kappler A, Obst M (2013) Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Appl Environ Microbiol 79:6524–6534

    Article  CAS  Google Scholar 

  • Huang Z, Liu Y, Paulsen BS, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968

    Article  CAS  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan deserts. J Arid Environ 66:620–634

    Article  Google Scholar 

  • Jia SR, Han PP, Dai YJ, HX LV (2014) The culture of Nostoc flagelliforme. Science Press, Beijing ISBN: 978-7-03-042513-3. In Chinese

    Google Scholar 

  • Kehr JC, Dittmann E (2015) Biosynthesis and function of extracellular glycans in cyanobacteria. Life 5:164–180

    Article  CAS  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2015) Analysis of environmental factors determining development and succession in biological soil crusts. Sci Total Environ 538:492–499

    Article  CAS  Google Scholar 

  • Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H, Duan L, Seip HM, Vogt RD, Mulder J et al (2006) Acid rain in China. Environ Sci Technol 40:418–425

  • Li H, Xu J, Liu Y, Ai S, Qin F, Li Z, Zhang H, Huang Z (2011) Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydr Polym 83:1821–1827

    Article  CAS  Google Scholar 

  • Liao CC, Liu SL, Wang WL (2006) Effects of temperature and pH on growth and photosynthesis of the thermophilic cyanobacterium Synechococcus lividus as measured by pulse-amplitude modulated fluorometry. Phycol Res 54:260–268

    Article  CAS  Google Scholar 

  • Liu H, Han X, Li L, Huang J, Liu H, Li X (2009) Grazing density effects on cover, species composition, and nitrogen fixation of biological soil crust in an inner Mongolia steppe. Rangel Ecol Manag 62:321–327

    Article  Google Scholar 

  • Liu W, Cui L, Xu H, Gao X (2017) Flexibility-rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl Environ Microbiol 83:01619-17

    Google Scholar 

  • Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  Google Scholar 

  • Liu Y, Yu L, Ke W, Gao X, Qiu B (2010) Photosynthetic recovery of Nostoc flagelliforme (Cyanophyceae) upon rehydration after 2 years and 8 years dry storage. Phycologia 49:429–437

    Article  CAS  Google Scholar 

  • Oni Y, Kelvin G, Lara M-M, John M, Lynley D, Charles B (2008) Effect of extraction techniques and conditions on the physicochemical properties of the water-soluble polysaccharides from gold kiwifruit (Actinidia chinensis). Int J Food Sci Technol 43:2268–2277

    Article  CAS  Google Scholar 

  • Oulehle F, Tahovská K, Chuman T, Evans CD, Hruška J, Růžek M, Bárta J (2018) Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests. Environ Pollut 238:884–893

    Article  CAS  Google Scholar 

  • Rao B, Liu Y, Wang W, Hu C, Li D, Lan S (2009) Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, Northwest China. Soil Biol Biochem 41:2387–2393

    Article  CAS  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755

    Article  CAS  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF, Turner BL II, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE et al (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  CAS  Google Scholar 

  • Rippka RJD, Waterbury J, Herdman M, Stainer R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rossi F, De Phillippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5:1218–1238

    Article  CAS  Google Scholar 

  • Rossi F, Mugnai G, De Phillippis R (2018) Complex role of the polymeric matrix in biological soil crusts. Plant Soil 429:19–34

  • Sand-Jensen K, Jespersen TS (2012) Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (−269 to 105°C), pH and salt stress. Oecologia 169:331–339

    Article  Google Scholar 

  • Singh A, Agrawal M (2008) Acid rain and its ecological consequences. J Environ Biol 29:15–24

    CAS  Google Scholar 

  • Wang J, Li Q, Li MM, Chen TH, Zhou YF, Yue ZB (2014) Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour Technol 163:374–376

    Article  CAS  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (cyanobacteria). J Biol Chem 280:40271–40281

    Article  CAS  Google Scholar 

  • Zhang HL, Fang W, Wang YP, Sheng GP, Zeng RJ, Li WW, Yu HQ (2013) Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol 47:11482–11489

    Article  CAS  Google Scholar 

  • Zhao XM, Bi YH, Chen L, Hu S, Hu ZY (2008) Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme, to rehydration at different temperature. J Arid Environ 72:370–377

    Article  Google Scholar 

Download references

Funding

We acknowledge the support from the National Natural Science Foundation of China (No. 31670104).

Author information

Authors and Affiliations

Authors

Contributions

X.G., L.L., and B. L. conducted the experiments, and X.G. drafted this manuscript.

Corresponding author

Correspondence to Xiang Gao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liu, LT. & Liu, B. Dryland cyanobacterial exopolysaccharides show protection against acid deposition damage. Environ Sci Pollut Res 26, 24300–24304 (2019). https://doi.org/10.1007/s11356-019-05798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05798-4

Keywords

Navigation