Skip to main content

Advertisement

Log in

Radiolabeling of amide functionalized multi-walled carbon nanotubes for bioaccumulation study in fish bone using whole-body autoradiography

  • Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Commercial and medicinal applications of functionalized carbon nanotubes (f-CNTs) such as amidated f-CNTs are expanding rapidly with a potential risk exposure to living organisms. The effects of amidated f-CNTs on aquatic species have received a limited attention. In this work, an easy wet method to prepare [14C]-label amide multi-walled carbon nanotubes (MWNTs) is reported. Labeled carbon nanotubes were prepared by successive reactions of carboxylation, chloroacylation, and final amidation using [14C]-labeled ethanolamine. The f-CNTs were characterized using elemental analysis, electron dispersive X-ray, transmission electron microscopy, thermogravimetric analysis, and Raman and FTIR spectroscopy. An uptake experiment was carried out with juvenile Arctic char (Salvelinus alpinus) using water dispersed amidated [14C]-f-CNTs to assess their biodistribution in fish tissues using whole body autoradiography. The radioactivity pattern observed in fish head suggests that f-CNTs were accumulated in head bone canals, possibly involving an interaction with mineral or organic phases of bones such as calcium and collagen. This f-CNTs distribution illustrates how important is to consider the surface charges of functionalized carbon nanotubes in ecotoxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Sid-Cheikh M, Pelletier E, Rouleau C (2011) Synthesis and characterization of [110mAg]-nanoparticles with application to whole body autoradiography of aquatic organisms. Appl Radiat Isot 69:1415–1142

    Article  CAS  Google Scholar 

  • Bacakova L, Kopova I, Stankova L, Liskova J, Vacik J, Lavrentiev V, Alexander Kromka A, Potocky S, Stranska D (2014) Bone cells in cultures on nanocarbonbased materials for potential bone tissue engineering: A review. Phys Status Solidi A 211:2688–2702

    Article  CAS  Google Scholar 

  • Bjorkland R, Tobias DA, Petersen EJ (2017) Increasing evidence indicates low bioaccumulation of carbon nanotubes. Environ Sci Nano 4:747–766

    Article  CAS  Google Scholar 

  • Campos-Garcia J, Martinez DS, Rezende KF, da Silva JR, Alves OL, Barbieri E (2016) Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicol Environ Saf 133:481–488

    Article  CAS  Google Scholar 

  • Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR (1997) Gowth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon 35:1495–1501

    Article  CAS  Google Scholar 

  • Cui HF, Vashist SK, Al-Rubeaan K, Luong JHT, Sheu FS (2010) Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 23:1131–1147

    Article  CAS  Google Scholar 

  • Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multi walled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y (2007) Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419–1424

    Article  CAS  Google Scholar 

  • Felix LC, Ede JD, Snell DA, Oliveira TM, Martinez-Rubi Y, Simard B, Luong JHT, Goss GG (2016) Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon 104:78–89

    Article  CAS  Google Scholar 

  • Forest GA, Alexander AJ (2007) A model for the dependence of carbon nanotube length on acid oxidation time. J Phys Chem C 111:10792–10798

    Article  Google Scholar 

  • Genten F, Terwinghe E, Danguy A (2010) Histologie illustrée du poisson. Quae edition, Paris, pp 379–402

  • Georgin, D., Czarny,B., Botquin, M., L’Hermite, M., Pinault, M., Bouchet-Fabre, B., Carriere, M., Poncy, J.L.; Chau, Q., Maximilien, R., Dive, V., Taran F., 2009. Preparation of the 14C-labeled multi walled carbon nanotubes for the biodistribution investigation. J Am Chem Soc 131, 14658-14659.

  • Gopalakrishnan R, Balamurugan K, Singam ERA, Sundaraman S, Subramanian V (2011) Adsorption of collagen onto single walled carbon nanotubes: a molecular dynamics investigation. Phys Chem Chem Phys 13:13046–13057

    Article  CAS  Google Scholar 

  • Grandi, S., Magistis, A., Mustarelli, P., Quarterone, E., Tomasi, C., Meda, L., 2006. Synthesis and characterization of Si-O2-PEG hybrid materials. J Noncryst Sol. 352, 273-280.

    Article  CAS  Google Scholar 

  • Heller DA, Barone PW, Strano MS (2005) Sonication-induced changes in chiral distribution: A complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon 43:651–673

    Article  CAS  Google Scholar 

  • Hou P, Liu C, Tong Y, Xu S, Liu M, Cheng H (2001) Purification of single-walled carbon nanotubes synthetized by the hydrogen arc-discharge method. J Mater Res 16:2526–2529

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154 A review

    Article  Google Scholar 

  • Jacoby A (2015) Global Markets and Technologies for Carbon Nanotubes. A BCC Research Nanotechnology Report, Report Code: NAN024F. http://www.bccresearch.com/market-research/nanotechnology/carbon-nantubes-global-markets-technologies-report-nan024f.html Visited 2019-03-15

  • Jang M-H, Hwang YS (2018) Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLoS One 13(3):e0194935. https://doi.org/10.1371/journal.pone.0194935

    Article  CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei L, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  • Kaempgen M, Lebert M, Haluska M, Nicoloso N, Roth S (2008) Sonochimical optimization of the conductivity of single-wall carbon nanotube networks. Adv Mater 20:616–620

    Article  CAS  Google Scholar 

  • Karimi M, Solati N, Amiri M, Mirshekari H, Mohamed E, Taheri M, Hashemkhani M, Saeidi A, Estiar MA, Kiani P, Ghasemi A, Basri SMM, Aref AR, Hamblin MR (2015) Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv 12:1071–1087

    Article  CAS  Google Scholar 

  • Kushuawa SKS, Ghoshal S, Rai AK, Singh S (2013) Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Brazil. J Pharm Sci 49:629–643

    Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool 30:1–131

    Article  Google Scholar 

  • Maes HM, Stibany F, Giefers S, Daniels B, Deutschmann B, Werner Baumgartner W, Schäffer A (2014) Accumulation and distribution of Mmultiwalled carbon nanotubes in Zebrafish (Danio rerio). Environ Sci Technol 48:12256–12264

    Article  CAS  Google Scholar 

  • Mananghaya M (2015) Modeling of single-walled carbon nanotubes functionalized with carboxylic and amide groups towards its solubilization in water. J Mol Liq 212:592–596

    Article  CAS  Google Scholar 

  • Martınez MT, Callejas MA, Benito AM, Cochet M, Seeger T, Anson A, Schreiber J, Gordon C, Marhic C, Chauvet O, Fierro JLG, Maser WK (2003) Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalization. Carbon 41:2247–2256

    Article  Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975

    Article  CAS  Google Scholar 

  • Petersen, E.J., Pinto, R.A., Zhang, L., Huang, Q., Landrum, P.F., Weber, Jr. W.J., 2011. Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils. Environ Sci Technol 45, 3718–3724.

    Article  CAS  Google Scholar 

  • Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents - physical properties and methods of purification. Ed. A. Weissberger. John Wiley & Sons, New York, NY

    Google Scholar 

  • Saffar KP, JamilPour N, and Rouhi G (2009) Carbon nanotubes in bone tissue engineering. Biomedical Engineering, Carlos Alexandre Barros de Mello (Ed.), 26, 477-498, InTechOpen.

  • Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A (2016) Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 501:278–299

    Article  CAS  Google Scholar 

  • Smith MB, March J (2007) March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), John Wiley & Sons, New York.

  • Sohn EK, Chung YS, Johari SA, Kim TG, Kim JK, Lee JH, Lee YH, Kang SW, Yu IJ (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Res Int:323090 7 pages

  • Solon EG (2007) Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discovery 2:503–514

    Article  CAS  Google Scholar 

  • Tasi D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  • Wang J., He C., Cheng N., Yang Q., Chen M., You L., Zhang Q. 2015. Bone marrow stem cells response to collagen/single-wall carbon nanotubes-COOHs nanocompositefFilms with transforming growth factor Beta 1. J Nanosci Nanotechnol 15, 4844-4850, Bone Marrow Stem Cells Response to Collagen/Single-Wall Carbon Nanotubes-COOHs Nanocomposite Films with Transforming Growth Factor Beta 1.

    Article  CAS  Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mecanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53

    Article  CAS  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  • Widiyarti G, Hanafi M, Isnijah S, Kardono LBS, Ngadiman E, Sundowo A (2009) Preparation of 2-aminoethylsulfonic acid. J Makara 13:55–58

    Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, de Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polyactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458

    Article  CAS  Google Scholar 

  • Zardini HZ, Davarpanah M, Shanbedi M, Amiri A, Maghrebi M, Ebrahimi L (2014) Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. J Biomed Mater Res Part A 102A:1774–1781

    Article  CAS  Google Scholar 

  • Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49:7380–7390

    Article  CAS  Google Scholar 

  • Zhang L, Petersen EJ, Zhang W, Chen Y, Cabrera M, Huang Q (2012) Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water. Environ Pollut 166:75–81

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6:555–577

    Article  Google Scholar 

Download references

Funding

This research work was funded by the Natural Sciences and Engineering Research Council of Canada and supported by the Canada Research Chair in Molecular Ecotoxicology (E.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssouf Djibril Soubaneh.

Ethics declarations

This research involved experiments on animals, Arctic char, due to the potential impact of f-CNTs on organisms in aquatic environment. This study was performed in strict accordance with Ethical Policy for Animal Experimentation (Publication No. C2-D34, Rev. 2012) approved by the Institutional Animal Care and Use Committee of the Université du Québec à Rimouski. This ethical policy is an application of the Canadian Council on Animal Care. Post-experimental cares of animals were provided including minimizing discomfort and the consequences of any disability resulting from the experiment.

Conflict of interest

The authors declare that they have no conflict of interest (financial or non-financial).

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soubaneh, Y.D., Pelletier, E., Desbiens, I. et al. Radiolabeling of amide functionalized multi-walled carbon nanotubes for bioaccumulation study in fish bone using whole-body autoradiography. Environ Sci Pollut Res 27, 3756–3767 (2020). https://doi.org/10.1007/s11356-019-05794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05794-8

Keywords

Navigation