Skip to main content
Log in

THE EFFECT OF 92-DAY SUBACUTE EXPOSURE TO SINGLE-WALLED CARBON NANOTUBES ON TRACE ELEMENT HOMEOSTASIS IN WISTAR RATS

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

OSUNT90T® single-walled carbon nanotubes (SWCNTs) were administered with drinking water at doses of 0 (control), 0.01, 0.1, 1.0, and 10 mg/kg body weight (bw) to juvenile male Wistar rats for 100 days. The levels of 17 chemical elements (Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Mg, Mn, Ni, Pb, Se, V, and Zn) in the liver, kidneys, spleen, brain, and testes were assessed using ICP-MS. A decrease of the content of certain chemical elements, including As, Pb, Cd, Cs, and Se, in the organs of animals that received SWCNTs and an increase of vanadium (V) and silver (Ag) levels in the kidneys were detected. The absence of a dependence between most of these effects and the nanomaterial dose along with preferential manifestation of the effects at low (0.01 and 0.1 mg/kg bw) doses are indicative of a complex systemic biochemical mechanism, apparently dependent on agglomeration at high concentrations, underlying the effects of SWCNTs on element homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Order 199n (April 1, 2016) of the Ministry of Healthcare of the Russian Federation “On the establishment of rules for appropriate laboratory practice”.

REFERENCES

  1. P.-C. Maa, N. A. Siddiquia, G. Maromb, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Composites A 41, 1345 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  2. M. F. de Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” Science (Washington, DC, U. S.) 339 (6119), 535 (2013). https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  3. J. C. Coyuco, Y. Liu, B.-J. Tan, and G. N. C. Chiu, “Functionalized carbon nanomaterials: exploring the interactions with caco-2 cells for potential oral drug delivery,” Int. J. Nanomed. 6, 2253 (2011). https://doi.org/10.2147/IJN.S23962

    Article  CAS  Google Scholar 

  4. F. Xu, H. Zhao, and S. D. Tse, “Carbon nanotube synthesis on catalytic metal alloys in methane/air counter flow diffusion flames,” Proc. Combust. Inst. 31, 1839 (2007). https://doi.org/10.1016/j.proci.2006.08.062

    Article  CAS  Google Scholar 

  5. S. J. Froggett, S. F. Clancy, D. R. Boverhof, and R. A. Canady, “A review and perspective of existing research on the release of nanomaterials from solid nanocomposites,” Part. Fibre Toxicol. 11, 17 (2014). https://doi.org/10.1186/1743-8977-11-17

    Article  CAS  Google Scholar 

  6. A. Mukherjee, S. Majumdar, A. D. Servin, et al., “Carbon nanomaterials in agriculture: a critical review,” Front. Plant Sci. 7, 172 (2016). https://doi.org/10.3389/fpls.2016.00172

    Article  Google Scholar 

  7. A. A. Shvedova, E. R. Kisin, R. Mercer, et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” Am. J. Physiol. Lung Cell. Mol. Physiol. 289, 698 (2005). https://doi.org/10.1152/ajplung.00084.2005

    Article  CAS  Google Scholar 

  8. F. Benetti, L. Bregoli, I. Olivato, and E. Sabbioni, “Effects of metal(loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology,” Metallomics 6, 729 (2014). https://doi.org/10.1039/c3mt00167a

    Article  CAS  Google Scholar 

  9. A. A. Shumakova, I. V. Gmoshinsky, V. A. Shipelin, et al., “Effect of multiwalled carbon nanotubes on the microelement status in the internal organs of rats in an experiment,” Nanotechnol. Russ. 13, 189 (2018). https://doi.org/10.1134/S1995078018020155

    Article  CAS  Google Scholar 

  10. V. A. Shipelin, A. A. Shumakova, A. G. Masyutin, et al., “In vivo subacute oral toxicity assessment of multiwalled carbon nanotubes: characteristic of nanomaterial and integral indicators,” Nanotechnol. Russ. 12, 559 (2017). https://doi.org/10.1134/S199507801705010X

    Article  CAS  Google Scholar 

  11. V. A. Shipelin, A. A. Shumakova, Kh. S. Soto, et al., “Influence of single-walled carbon nanotubes ingestion by rats on their integral and biochemical indices,” Gigiena Sanit. 98, 332 (2018). https://doi.org/10.18821/0016-9900-2019-98-3-332-338

    Article  Google Scholar 

  12. DELTA Professional with New Technology X-act Count. www.olympus-ims.com/ru/xrf-xrd/delta-handheld/delta-prof/.

  13. B. J. Panessa-Warren, M. M. Maye, J. B. Warren, and K. M. Crosson, “Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure,” Environ. Pollut. 157, 1140 (2009). https://doi.org/10.1016/j.envpol.2008.12.028

    Article  CAS  Google Scholar 

  14. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Concepts of nanoparticle dose metric and response metric,” Environ. Health Perspect 115, A290 (2007). https://doi.org/10.1289/ehp.115-1892118

    Article  Google Scholar 

  15. X. Cui, B. Wan, L. H. Guo, Y. Yang, and X. Ren, “Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: role of P2X7 receptor,” Environ. Sci. Technol. 50, 12473 (2016). https://doi.org/10.1021/acs.est.6b03842

    Article  CAS  Google Scholar 

  16. A. Al Faraj, F. Fauvelle, N. Luciani, et al., “In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques,” Int. J. Nanomed. 6, 351 (2011). https://doi.org/10.2147/IJN.S16653

    Article  CAS  Google Scholar 

  17. J. W. Lee, E. J. Won, H. M. Kang, et al., “Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus),” Aquat. Toxicol. 171, 9 (2016). https://doi.org/10.1016/j.aquatox.2015.12.005

    Article  CAS  Google Scholar 

  18. C. Zhang, X. Chen, L. Tan, and J. Wang, “Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae skeletonema costatum,” Environ. Sci. Pollut. Res. Int 25, 13127 (2018). https://doi.org/10.1007/s11356-018-1580-7

    Article  CAS  Google Scholar 

  19. M. H. Jang and Y. S. Hwang, “Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna,” PLoS One 13, e0194935 (2018). https://doi.org/10.1371/journal.pone.0194935

    Article  CAS  Google Scholar 

  20. R. Freitas, F. Coppola, L. de Marchi, et al., “The influence of arsenic on the toxicity of carbon nanoparticles in bivalves,” J. Hazard. Mater. 358, 484 (2018). https://doi.org/10.1016/j.jhazmat.2018.05.056

    Article  CAS  Google Scholar 

  21. X. Wang, R. Qu, A. A. Allam, et al., “Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and SS(V)] to Daphnia magna: the role of certain arsenic species,” Environ. Toxicol. Chem. 35, 1852 (2016). https://doi.org/10.1002/etc.3340

    Article  CAS  Google Scholar 

  22. J.-G. Yu, X.-H. Zhao, L.-Y. Yu, et al., “Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes,” J. Radioanal. Nucl. Chem. 299, 1155 (2014). https://doi.org/10.1007/s10967-013-2818-y

    Article  CAS  Google Scholar 

  23. M. Habuda-Stanić and M. Nujić, “Arsenic removal by nanoparticles: a review,” Environ. Sci. Pollut. Res. Int. 22, 8094 (2015). https://doi.org/10.1007/s11356-015-4307-z

    Article  CAS  Google Scholar 

  24. J. W. Lee, H. M. Kang, E. J. Won, et al., “Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus),” Aquat. Toxicol. 172, 67 (2016). https://doi.org/10.1016/j.aquatox.2015.12.022

    Article  CAS  Google Scholar 

  25. A. Alazzam, E. Mfoumou, I. Stiharu, et al., “Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells,” Nanomedicine 6, 563 (2010). https://doi.org/10.1016/j.nano.2009.12.005

    Article  CAS  Google Scholar 

  26. P. Melnikov and L. Z. Zanoni, “Clinical effects of cesium intake,” Biol. Trace Elem. Res. 135, 1 (2010). https://doi.org/10.1007/s12011-009-8486-7

    Article  CAS  Google Scholar 

  27. L. H. Ding, J. Stilwell, H. J. Zhang, et al., “Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast,” Nano Lett. 5, 2448 (2005). https://doi.org/10.1021/nl051748o

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the subsidy for the fulfillment of the State Assignment within the framework of the Fundamental Research Program (Ministry of Education and Science of the Russian Federation, theme 0529-2014-0053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gmoshinski.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gmoshinski, I.V., Shumakova, A.A., Shipelin, V.A. et al. THE EFFECT OF 92-DAY SUBACUTE EXPOSURE TO SINGLE-WALLED CARBON NANOTUBES ON TRACE ELEMENT HOMEOSTASIS IN WISTAR RATS. Nanotechnol Russia 14, 149–158 (2019). https://doi.org/10.1134/S1995078019020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020071

Navigation