Skip to main content
Log in

The impact of several hydraulic fracking chemicals on Nile tilapia and evaluation of the protective effects of Spirulina platensis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydraulic fracturing (fracking) chemicals are used to maximize the extraction of hard-to-reach underground energy resources. Large amounts of fracking fluid could escape to the surrounding environments, including underground and surface water resources, during the chemical mixing stage of the hydraulic fracturing water cycle due to equipment failure or human error. However, the impact of pollution resulting from operational discharges is difficult to assess in aquatic ecosystems. In this study, pathological investigations, chromosomal aberrations, DNA damage, and biochemical and hematological parameters were used to evaluate the effects of such chemicals on Nile tilapia. Chromosomal aberrations are considered very sensitive genetic markers of exposure to genotoxic chemicals and are used as indicators of DNA damage. The appearance of different types of chromosomal aberrations (gaps and breaks) due to chemical exposure was significantly reduced by treatment with spirulina. Various deleterious findings in Nile tilapia, in the current study, could attributed to the presence of fracking chemicals in the aquatic environment. However, the presence of spirulina in the diet reduced the hazards of such chemicals. In addition, cytogenetic studies in the current work revealed the importance of spirulina in ameliorating the genotoxic effects of a mixture of some chemicals used in fracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Daim, M.M.; Abuzead, S.M.M.; Halawa, S.M. (2013). Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One Sept. 9; 8(9):e72991. doi: https://doi.org/10.1371/journal.pone.0072991

  • Adel M, Yeganeh S, Dadar M, Sakai M, Dawood MA (2016) Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso Linnaeus, 1754). Fish Shellfish Immunol 56:436–444

    Article  CAS  Google Scholar 

  • Al-Sabti K (1986) Clastogenic effect of five carcinogenic mutagenic chemicals on the cells of the common crab. Comp Biochem Physiol 8:5–9

    Google Scholar 

  • Au DWT (2004) The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull 48:817–834

    Article  CAS  Google Scholar 

  • Bamberger M, Oswald RE (2015) Long-term impacts of unconventional drilling operations on human and animal health. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(5):447–459

    Article  CAS  Google Scholar 

  • Bancroft, J.D.; Suyarna, K.; Layton, C. (2012) Bancroft’s theory and practice of histological techniques. 7th ed. E book ISBN: 978-0-7020-5032-9

  • Belpaeme K, Cooreman K, Kirsch–Volders M (1998) Development and validation of the in vivo alkaline comet assay for detecting genomic damage in marine flatfish. Mutat Res Genet Toxicol 415:167–184

    Article  CAS  Google Scholar 

  • Bills TD, Marking LL, Howe GE (1993) Sensitivity of juvenile striped bass to chemicals used in aquaculture. In: Resour.Publ, vol 192. Fish Wildl. Serv., U.S.D.I., Washington, DC, p 11

    Google Scholar 

  • Buecker A, Carvalho W, Alves-Gomes JA (2006) Evaluation of mutagenicity and genotoxicity in Eigenmannia virescens (Teleostei, Gymnotiformes) exposed to benzene. Acta Amaz 36:357–364

    Article  Google Scholar 

  • Buecker A, Carvalho MS, Conceição MB, Alves-Gomes JA (2012) Micronucleus test and comet assay in erythrocytes of the Amazonian electric fish Apteronotus bonapartii exposed to benzene. J Braz Soc Ecotoxicol 7(1):65–73

    Article  Google Scholar 

  • Chen H, Carter KE (2017) Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play. J Environ Manag 200:312–324

    Article  CAS  Google Scholar 

  • Chen SS, Sun Y, Tsang DCW, Graham NJD, Ok YS, Feng Y, Li XD (2017) Insights into the subsurface transport of As (V) and Se (VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China. Environ Pollut 223:449–456

    Article  CAS  Google Scholar 

  • Conklin KA (2000) Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 37(1):1–18

    Article  CAS  Google Scholar 

  • De-Andrade VM, De-Freitas TR, Da Silva J (2004) Comet assay using mullet (Mugil sp.) and sea catfish (Netuma sp.) erythrocytes for the detection of genotoxic pollutants in aquatic environment. Mutat Res 560:57–67

    Article  CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • Duncan PL, Klesius PH (1996) Effects of feeding spirulina on specific and nonspecific immune responses of channel catfish. J Aquat Anim Hlth 8(4):308–313

    Article  Google Scholar 

  • Egyptian Initiative for Personal Rights (2012) Oil companies in Egypt use controversial technology banned in a number of countries-EIPR warns: gas extraction using hydraulic fracturing threatens Egypt’s water resources. http://eipr.org/en/pressrelease/2012/09/19/1492

  • Elliott EG, Ettinger AS, Leaderer BP, Bracken M, Deziel NC (2017) A systemic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. J Expo Sci Environ Epidemiol 27(1):90–99. https://doi.org/10.1038/jes.2015.81

    Article  CAS  Google Scholar 

  • Ezeonyejiaku CD, Obiakor MO, Ezenwelu CO (2011) Toxicity of copper sulphate and behavioral locomotor response of tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus) species. Online J Anim Feed Res 1:130–134

    Google Scholar 

  • Feldman BF, Zinkl JG, Jain NC (2000) Schalm’s veterinary hematology, 5th edn. Lea and Febiger, Philadelphia, U.S.A., p 1120

    Google Scholar 

  • Fermanagh Fracking Awareness Network (FFAN) (2012). http://www.frackaware.com/wordpress/wp-content/uploads/2012/08/Fishing-Health-and-What-is-Fracking.pdf

  • Flores-Lopes F, Thomaz AT (2011) Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Braz J Biol 71(1):179–188

    Article  CAS  Google Scholar 

  • Folkerts EJ, Blewetta TA, He YH, Goss GG (2017) Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flow back and produced water. Environ Pollut 231(2):1477–1487

    Article  CAS  Google Scholar 

  • Frenzilli G, Lyons BP (2013) The comet assay in marine animals. Methods Mol Biol 1044:363–372

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681:80–92

    Article  CAS  Google Scholar 

  • Gawlik BM, Tavazzi S, Mariani G, Skejo H, Comero S (2017) Analysis of chemical constituents and additives in hydraulic fracturing waters. Joint research Center technical report, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Girish KB, Bijoy NS (2014) Copper toxicity: hematological and histopathological changes and prophylactic role of vitamin C in the fish, Anabas testudineus (Bloch, 1792). J Zoo Stud 1(3):4–13

    Google Scholar 

  • Goss S (2013) Fracking fluids spill caused Kentucky fish kill. http://www.ewg.org/enviroblog/2013/09/fracking-fluids-spill-caused-kentucky-fish-kill-

  • Greg R, Robert H, Norman J (2004) Unlocking the Monterey Shale potential at Elk Hills: a case study. In SPE international thermal operations and heavy oil symposium and western regional meeting.16-18 March, Bakersfield, California, USA.

  • Haque SE, Gilani KM (2005) Effect of ambroxol, spirulina and vitamin-E in naphthalyne induced cataract in female rats. Indian J Physiol Pharmacol 49(1):57–64

    CAS  Google Scholar 

  • Harkness JS, Dwyer GS, Warner NR, Parker KM, Mitch WA, Vengosh A (2015) Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Environ Sci Technol 49(3):1955–1963. https://doi.org/10.1021/es504654n

    Article  CAS  Google Scholar 

  • He Y, Folkerts EJ, Zhang Y, Martin JW, Alessi DS, Goss GG (2017) Effects on biotransformation, oxidative stress, and endocrine disruption in rainbow trout (Oncorhynchus mykiss) exposed to hydraulic fracturing flowback and produced water. Environ Sci Technol 51(2):940–947

    Article  CAS  Google Scholar 

  • He Y, Sun C, Zhang Y, Folkerts EJ, Martin JW, Goss GG (2018) Developmental toxicity of the organic fraction from hydraulic fracturing flowback and produced waters to early life stages of zebrafish (Danio rerio). Environ Sci Technol 52(6):3820–3830

    Article  CAS  Google Scholar 

  • Hirahashi T, Matoto M, Hazeki K, Saeki Y, Ui M, Seya T (2002) Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Inter Immuno-pharmacol 2:423–434

    Article  CAS  Google Scholar 

  • Hironobu W, Kazuki O, Asmi C, Tassakka T, Masahiro S (2006) Immuno-stimulant effects of dietary Spirulina platensis on carp. Cyprinus carpio Aquac 258:157–163

    Article  Google Scholar 

  • Kahrilas GA, Blotevogel J, Stewart PS, Thomas-Borch T (2015) Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49:16–32. https://doi.org/10.1021/es503724k

    Article  CAS  Google Scholar 

  • Kassotis CD, Tillitt DE, Davis JW, Hormann AM, Nagel SC (2014) Estrogen and androgen receptor activities of hydraulic fracturing chemicals, surface and ground water in a drilling-dense region. Endocrinology. 155(3):897–907. https://doi.org/10.1210/en.2013-1697

    Article  CAS  Google Scholar 

  • Kassotis CD, Klemp KC, Vu D, C; Lin C-H, Meng C-X et al (2015) Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice. Endocrinology. 156(12):4458–4473. https://doi.org/10.1210/en.2015-1375

    Article  CAS  Google Scholar 

  • Kassotis CD, Nagel SC, Stapleton MH (2018) Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3–L1 cells. Sci Total Environ Nov 01(640-641):1601–1610. https://doi.org/10.1016/j.scitotenv.2018.05.030

    Article  CAS  Google Scholar 

  • Kurashvili M, Varazi T, Khatisashvili G, Gigolashvili G, Adamia G, Pruidze M, Gordeziani M, Chokheli L, Japharashvili S, Khuskivadze N (2018) Blue-green alga spirulina as a tool against water pollution by 1,1′-(2,2,2-trichloroethane-1,1-diyl)bis(4-chlorobenzene) (DDT). Annals Agrarian Sc 16(4):405–409. https://doi.org/10.1016/j.aasci.2018.07.005

    Article  Google Scholar 

  • Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64

    Article  CAS  Google Scholar 

  • Leung HW (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49(1):26–39

    Article  CAS  Google Scholar 

  • Lovasoa C (2014) Study of treated and untreated oil based drilling waste using a biomarker approach: gill and liver histopathology in Atlantic salmon (Salmo salar). MSc. Environmental Technology/Offshore Environmental Engineering. In: Faculty of Science and Technology. University of Stavanger, Norway

    Google Scholar 

  • Luek JL, Gonsior M (2017) A review of organic compounds in hydraulic fracturing fluids and wastewaters. Water Res 123:536–548. https://doi.org/10.1016/j.watres.2017.07.012

    Article  CAS  Google Scholar 

  • Mahmoud MA, Abdelsalam M, Mahdy OA, El Miniawy HMF, Ahmed ZA et al (2016) Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt. Environ Pollut 219:939–948

    Article  CAS  Google Scholar 

  • Mall, A. (2014). Halliburton takes 5 days to provide chemical information at Ohio fracking explosion that killed 70,000 fish. NRDC. https://www.nrdc.org/experts/amy-mall/halliburton-takes-5-days-provide-chemical-information-ohio-fracking-explosion.

    Google Scholar 

  • Martine GR, Loureiro AP, Marques SA, Miyamoto S, Yamaquchi LF (2003) In: Oxidative and alkylating damage in DNA. Mutation Res./Rev. Mutat. Res., 544, (2-3): 115- 127

  • Mazon AF, Monteiro EAS, Pinheiro GHD, Fernandes MN (2002) Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish. Prochilodusscrofa Braz Biol 62:621–631

    Article  CAS  Google Scholar 

  • McCullough SD, On DM, Bowers EC (2017) Using chromatin immunoprecipitation in toxicology: a step-by-step guide to increasing efficiency, reducing variability, and expanding applications. Curr Protoc Toxicol 2; 72:3.14.1-3.14.28. https://doi.org/10.1002/cptx.22

  • McKenzie LM, Witter RZ, Newman LS, Adgate JL (2012) Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci Total Environ 424:79–87

    Article  CAS  Google Scholar 

  • Morgan RD (2012) What the frack? An empirical analysis of the effect of regulation on hydraulic fracturing. Quinnipiac Hlth Law J 16(1):77–114

    Google Scholar 

  • Nascimento AA, Arau’jo FG, Gomes ID, Mendes RMM, Sales A (2012) Fish gills alterations as potential biomarkers of environmental quality in a eutrophized tropical river in South-Eastern Brazil. Anat Histol Embryol 41:209–216

    Article  CAS  Google Scholar 

  • National Institute of health (NIH) (2016) https://pubchem.ncbi.nlm.nih.gov/compound/Ammonium_persulfate#section=Non-Human-Toxicity-Values

  • Papoulias DM, Velasco A (2013) Histopathological analysis of fish from Acorn Fork Creek, Kentucky, exposed to hydraulic fracturing fluid releases. Southeast Nat (12):92–111

  • Prahalathan C, Selvakumar E, Varalakshmi P (2006) Lipoic acid modulates Adriamycin induced testicular toxicity. Reprod Toxicol 21:54–59

    Article  CAS  Google Scholar 

  • Praveen N, Shadab GA (2012) Cytogenetic evaluation of cadmium chloride on Channa punctatus. J Environ Biol 33:663–666

    Google Scholar 

  • Premkumar K, Pachiappan A, Abraham SK, Santhiya ST, Gopinata PM, Ramesh A (2001) Effect of Spirulina fusiformis on cyclophosphamide and mitomycin-C induced genotoxicity and oxidative stress in mice. Fitoterapia 72:906–911

    Article  CAS  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clinic Inter Aging 2(2):219–236

    CAS  Google Scholar 

  • Ray J, Peterson DA, Schinstine M, Gage FH (1993) Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci 90:3602–3606

    Article  CAS  Google Scholar 

  • Ray S, Roy K, Sengupta C (2007) Evaluation of protective effects of water extract of spirulina platensis (blue green algae) on cisplatin-induced lipid peroxidation. Indian J Pharm Sci 69:378–383

    Article  Google Scholar 

  • Roja SJ, Abbas B, Maryam G, Seyed MV, Maryam T (2013) Impact of copper sulphate on hematological and some biochemical parameters of common Carp (Cyprinus carpio L., 1758) in different pH. World J. Fish & Marine Sc 5(5):486–491

    Google Scholar 

  • Shelke AD, Wani GP (2015) Protective effect of dietary supplementation of Spirulina platensis on improvement of growth parameters in mercuric chloride exposed fish. Int J of Life Science (A3):38–41

  • Singh D, Nath K, Trivedi SP, Sharma YK (2008) Impact of copper on hematological profile of freshwater fish, Channa punctatus. J Environ Biol 29:253–257

    CAS  Google Scholar 

  • Srivastava S, Gupta A, Chaturvedi S, Abhinav A, Singh R (2009) Effects of short-term therapeutic bath of malachite green and formalin on certain hematological parameters of a freshwater catfish, (Heteropneustes fossilis) (Bloch). J Exp Zool 12(1):79–83

    Google Scholar 

  • Tao XY, Yu SY, Kang L, Huang HX, Wei AY (2004) Study on the genetic damage in mice induced by the volatile organic compounds of decoration materials. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing ZaZhi, 22: 194-196

  • Tavares-Dias M, Martins ML, Schalch SH, Onaka CIF, Quintana JRE et al (2002) Hematologic and histopathologic changes in pacu (Piaractusmes opotamicus) Holmberg, 1887 (Osteichthyes, Characidae) treated with copper sulfate (CuSO4). Acta Scientiarum Maringá 24(2):547–554

    CAS  Google Scholar 

  • United States House of Representatives. “US House of Representative” (2011). Chemicals used in hydraulic fracturing. Washington, DC: Committee on Energy and Commerce APRIL 2011

  • Višnjić-Jeftić Z, Jarić I, Jovanovic L et al (2010) Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosa immaculata Bennet 1835) from the Danube River (Serbia). Microchem J 95(2):341–344

    Article  CAS  Google Scholar 

  • Vutukuru S, Suma C, Madhavi K, Juveria S, Pauleena J, Raoand J, Anjaneyulu Y (2005) Studies on the development of potential biomarkers for rapid assessment of copper toxicity to freshwater fish using Esomusdanricus as model. Int J Environ Res Public Health 2(1):63–73

    Article  CAS  Google Scholar 

  • Wannee JK, Somphong S (2007) Efficacy of ascorbic acid reducing water bone copper toxicity in butterfish (Poronotus triacanthus). J Biol Sci 7:620–625

    Article  Google Scholar 

  • Wattenberg EV, Bielicki JM, Suchomel AE, Sweet JT, Vold EM, Ramachandran G (2015) Assessment of the acute and chronic health hazards of hydraulic fracturing fluids. J Occup Environ Hyg 12(9):611–624. https://doi.org/10.1080/15459624.2015.1029612

    Article  CAS  Google Scholar 

  • Whysner J, Reddy MV, Ross PM, Mohan M, Lax EA (2004) Genotoxicity of benzene and its metabolites. Mutat Res 566:99–130

    Article  CAS  Google Scholar 

  • World Health Organization (2016) http://monographs.iarc.fr/ENG/Classification/index.php

  • Xu J, Lian LJ, Wu C, Wang XF, Fu WY, Xu LH (2008) Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46(5):1488–1494

    Article  CAS  Google Scholar 

  • Yadav KK, Trivedi SP (2009) Chromosomal aberrations in a fish Channa punctatus after in vivo exposure to three heavy metals. Mutation Res Gen Toxicol Environ Mut 1:7–12

    Article  CAS  Google Scholar 

  • Yesudass T, Sekar J, Muthusamy P (2014) Effect of copper toxicity on hematological parameters to fresh water fish Cyprinus Carpio (Common Carp). J Environ Sci Toxicolo Food Technology 8:50–60

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. R. Tolba, director of the Department for Laboratory Animal Science, and Dr. J. Steitz and Dr. P. K. Srinivasan at the Department for Laboratory Animal Science, University Hospital, RWTH Aachen, Germany, for their continuous encouragement, valuable advice, and help in the production of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh Afify.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A., Abd El-Rahim, A.H., Mahrous, K.F. et al. The impact of several hydraulic fracking chemicals on Nile tilapia and evaluation of the protective effects of Spirulina platensis. Environ Sci Pollut Res 26, 19453–19467 (2019). https://doi.org/10.1007/s11356-019-05246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05246-3

Keywords

Navigation