Skip to main content
Log in

Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO43−, and SO42−. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelfattah EA, Augustyniak M, Yousef HA (2017) Biomonitoring of genotoxicity of industrial fertilizer pollutants in Aiolopus thalassinus (Orthoptera: Acrididae) using alkaline comet assay. Chemosphere 182:762–770

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahmad S (1992) Biochemical defense of pro-oxidant plant allelochemicals by herbivorous insects. Biochem Syst Ecol 20(4):269–296

    Article  CAS  Google Scholar 

  • Ahmad S (1995) Oxidative stress from environmental pollutants. Arch Insect Biochem Physiol 29(2):135–157

    Article  CAS  Google Scholar 

  • Amado LL, Robaldo RB, Geracitano L, Monserrat JM, Bianchini A (2006) Biomarkers of exposure and effect in the Brazilian flounder Paralichthys orbignyanus (Teleostei: Paralichthyidae) from the Patos Lagoon estuary (Southern Brazil). Mar Pollut Bull 52(2):207–213

    Article  CAS  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Method Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Augustyniak M, Babczynska A, Migula P, Wilczek G, Łaszcyca P, Kafel A, Augustyniak M (2005) Joint effects of dimethoate and heavy metals on metabolic responses in a grasshopper (Chorthippus brunneus) from a heavy metals pollution gradient. Comp Biochem Physiol C 141(4):412–419

    Google Scholar 

  • Augustyniak M, Juchimiuk J, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Babczyńska A, Migula P (2006) Zinc-induced DNA damage and the distribution of metals in the brain of grasshoppers by the comet assay and micro-PIXE. Comp Biochem Physiol C 144(3):242–251

    Google Scholar 

  • Augustyniak M, Babczyńska A, Augustyniak M (2011) Oxidative stress in newly-hatched Chorthippus brunneus—the effects of zinc treatment during diapause, depending on the female's age and its origins. Comp Biochem Physiol C 154:172–179

    CAS  Google Scholar 

  • Azam I, Afsheen S, Zia A, Javed M, Saeed R, Sarwar MK, Munir B (2015) Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan. Biomed Res Int:1–11. https://doi.org/10.1155/2015/942751

  • Bagatto G, Shorthouse JD (1996) Accumulation of Cu and Ni in successive stages of Lymantria dispar L. (Lymantriidae: Lepidoptera) near ore smelters at Sudbury, Ontario, Canada. Environ Pollut 92(1):7–12

    Article  CAS  Google Scholar 

  • Baghban A, Sendi JJ, Zibaee A, Khosravi R (2014) Effect of heavy metals (Cd, Cu, and Zn) on feeding indices and energy reserves of the cotton boll worm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J Plant Protec Res 54(4):367–373. https://doi.org/10.2478/jppr-2014-0055

    Article  CAS  Google Scholar 

  • Bilbao C, Ferreiro JA, Comendador MA, Sierra LM (2002) Influence of mus201 and mus308 mutations of Drosophila elanogaster on the genotoxicity of model chemicals in somatic cells in vivo measure with the comet assay. Mutat Res 503:11–19

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  Google Scholar 

  • Cakmakoglu AB, Attar R, Kahraman OT, Dalan AB, Iyibozkurt AC et al (2011) Cyclooxygenase-2 gene and epithelial ovarian carcinoma risk. Mol Biol Rep 38:3481–3486

    Article  CAS  Google Scholar 

  • Chaitanya RP, Sridevi KS, Kumar BS, Mastan KA, Dutta-Gupta A (2014) Expression analysis of reactive oxygen species detoxifying enzyme genes in Anopheles stephensi during Plasmodium berghei midgut invasion. Asian Pac J Trop Med 7:680–684

    Article  CAS  Google Scholar 

  • Chaitanya, R. K., Shashank, K., and Sridevi, P. 2016. Oxidative Stress in Invertebrate Systems. In: Ahmad R (ed) Biochemistry, Genetics and Molecular Biology “Free Radiation and Disease”. InTech. https://doi.org/10.5772/64573

  • Damien C, Chantal VH, Pirouz S, Zerimech FH, Laurence J, Jean MH (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.)R. Sant. -identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69

    Article  Google Scholar 

  • Devkota B, Schmidt G (1999) Effects of heavy metals (Hg2+, Cd2+, Pb2+) during the embryonic development of Acridid grasshoppers (Insects, Caelifera). Arch Environ Contam Toxicol 36:405–414. https://doi.org/10.1007/PL00006613

    Article  CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P (2012) Mechanisms of free radical-induced damage to DNA. Free Rad Res 46(4):382–419. https://doi.org/10.3109/10715762.2011.653969

    Article  CAS  Google Scholar 

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves (relationships to resistance). Plant Physiol 113(1):249–257

    Article  CAS  Google Scholar 

  • Dos Anjos NA, Schulze T, Brack W, Val AL, Schirmer K, Scholz S (2011) Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical fresh water ecosystems. Aquat Toxicol 103(1):46–52

    Article  CAS  Google Scholar 

  • Dutta P, Dey T, Manna P, Kalita J (2016) Antioxidant potential of Vespa affinis L., a traditional edible insect species of north East India. PLoS One 11(5):e0156107

    Article  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  Google Scholar 

  • Farahat AA, Al-Sayed AA, Mahfoud NA (2010) Compost and other organic and inorganic fertilizers in the scope of the root-knot nematode reproduction and control. Egypt J Agronematol 9:18–29

    Google Scholar 

  • Farooqui T, Farooqui AA (2011) Oxidative stress in vertebrates and invertebrates: molecular aspects of cell signaling. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109. https://doi.org/10.1038/nrg3142

    Article  CAS  Google Scholar 

  • Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29(2):187–197

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA Repair and Mutagenesis, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Govind P, Madhuri S (2014) Heavy Metals Causing Toxicity in Animals and Fishes. Res J Anim Vet Fish Sci 2(2):17–23

    Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  Google Scholar 

  • Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement M (2014) Open Comet: An automated tool for comet assay image analysis. Redox Biol 2:457–465. https://doi.org/10.1016/j.redox.2013.12.020

    Article  CAS  Google Scholar 

  • Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 443(1):37–52

    Article  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radical bio med. Oxford University Press, New York

    Book  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British J Pharmacol 142(2):231–255

    Article  CAS  Google Scholar 

  • Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18(1):27–47

    Article  CAS  Google Scholar 

  • Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183. https://doi.org/10.1111/j.1752-4571.2010.00165.

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. Functional metabolism: regulation and adaptation 1:319–966

  • Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation. Free Radic Bio Med 19(3):271–280

    Article  CAS  Google Scholar 

  • Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16. https://doi.org/10.1242/jeb.019752

    Article  CAS  Google Scholar 

  • Ihechiluru NB, Henry AN, Taiwo IE (2015) Heavy metal bioaccumulation and oxidative stress in Austroaeschna inermis (dragon fly) of the Lagos Urban ecosystem. J Environ Chem Ecotoxicol 7(1):11–19

    Article  CAS  Google Scholar 

  • Iszard MB, Liu J, Klaassen CD (1995) Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology 104(1-3):25–33

    Article  CAS  Google Scholar 

  • Jensen P, Trumble JT (2003) Ecological consequences of bioavailability of metals and metalloids in insects. Recent Res Dev Entomol 42:1–17

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, Heidelberg. ISBN-10 3–540–32713-4. https://doi.org/10.1007/978-3-540-32714-1

    Book  Google Scholar 

  • Kaviraj A, Unlu E, Gupta A, El Nemr A (2014) Biomarkers of environmental pollutants. Bio Med Res Int. 2 pages

  • Kelly FJ, Mudway IS (2003) Protein oxidation at the air-lung interface. Amino Acids 25(3–4):375–396

    Article  CAS  Google Scholar 

  • Khaper N, Kaur K, Li T, Farahmand F, Singal P K (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. In Biochemistry of hypertrophy and heart failure. Springer US, pp 9–15

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods of their quantification. Toxicol Pathol 30(6):620–650

    Article  CAS  Google Scholar 

  • Korsloot A, Van Gestel CA, Van Straalen NM (2004) Environmental stress and cellular response in arthropods. CRC Press, Boca Raton

    Book  Google Scholar 

  • Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52(1):11–20

    Article  CAS  Google Scholar 

  • Kumar KB, Khan PA (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Int J Exp Biol 20(5):412–416

    CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–478

    Article  CAS  Google Scholar 

  • Li Z, Li P, Randak T (2010) Ecotoxicological effects of short-term exposure to a human pharmaceutical verapamil in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 152(3):385–391

    Google Scholar 

  • Lijun L, Xuemei L, Yaping G, Enbo M (2005) Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environ Toxicol Pharmacol 20(3):412–416

    Article  CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42(8):656–666

    Article  CAS  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8):118–126

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30

    Article  CAS  Google Scholar 

  • Maret W (2005) Zinc coordination environment in protein determine zinc function. J Trace Elem Med Biol 19:7–12

    Article  CAS  Google Scholar 

  • Maroni G, Watson D (1985) Uptake and binding of cadmium, copper and zinc by Drosophila melanogaster larvae. Insect Biochem 15(1):55–63

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Google Scholar 

  • Migula P, Kafel A, Bednarska K (1996) Environmental pollution and allozyme variation in the red wood ant (F. polyctena). St Soc Sci Torunensis 4:77–82

    Google Scholar 

  • Migula P (1997) Molecular and physiological biomarkers in insects as the tools in environmental hazard assessment. Acta Phytopatol Entomol Hung 32:231–243

    CAS  Google Scholar 

  • Migula P, Laszczyca P, Augustyniak M, Wilczek G, Rozpedek K, Kafel A, Woloszyn M (2004) Antioxidative defence enzymes in beetles from a metal pollution gradient. Biol Brat 59:645–654

    CAS  Google Scholar 

  • Okamoto T, Taguchi M, Osaki T, Fukumoto S, Fujita T (2014) Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation. J Bone Miner Metab 32(4):393–399

    Article  CAS  Google Scholar 

  • Poljšak B, Fink R (2014) The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev Vol 2014, Article ID 671539, 22 pages

  • Posthuma L, Van Straalen NM (1993) Heavy-metal adaptation in terrestrial invertebrates- a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 106:11–38

    Article  Google Scholar 

  • Romero FJ, Romá J, Bosch-Morell F, Romero B, Segura-Aguilar J, Llombart-Bosch A, Ernster L (2000) Reduction of brain antioxidant defense upon treatment with butylated hydroxyanisole (BHA) and Sudan III in Syrian golden hamster. Neurochem Res 25(3):389–393

    Article  CAS  Google Scholar 

  • Schmidt GH, Ibrahim NM, Abdallah MD (1992) Long-term effects of heavy metals in food on developmental stages of Aiolopus thalassinus (Saltatoria: Acrididae). Arch Environ Contam Toxicol 23:375–382

    Article  CAS  Google Scholar 

  • Shinkai Y, Li S, Kikuchi T, Kumagai Y (2015) Participation of metabolic activation of 2,4,6-trinitrotoluene to 4-hydroxylamino-2,6-dinitrotoluene in hematotoxicity. J Toxicol Sci 40(5):597–604

    Article  CAS  Google Scholar 

  • Shukla AK, Pragya P, Chowdhuri DK (2011) A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutat Res 726:222–226

    Article  CAS  Google Scholar 

  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal R (2017) Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep 4:240–244

    Article  CAS  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Review. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578. https://doi.org/10.3390/ijms160613561

    Article  CAS  Google Scholar 

  • Sureda A, Box A, Enseñat M, Alou E, Tauler P, Deudero S, Pons A (2006) Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. Comp Biochem Physiol C 144(2):191–196

    Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    Article  CAS  Google Scholar 

  • Van Straalen, N.M., Donker, M.N., 1994. Heavy metal adaptation in terrestrial arthropods- physiological and genetic aspects. In: Sommeijer, M.J., Van der Blom,J. (Eds.), Proceedings of the Section Experimental and Applied Entomology. Nederlandse Entomologische Vereniging, Amsterdam, pp. 3–17.

  • Wilczek G, Kramarz P, Babczyńska A (2003) Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations. Comp Biochem Physiol C Toxicol Pharmacol 134(4):501–512

    Article  CAS  Google Scholar 

  • Wilczek G, Babczyńska A, Augustyniak M, Migula P (2004) Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ Pollut 132:453–461

    Article  CAS  Google Scholar 

  • Woodring JP, Sparks TC (1987) Juvenile hormone esterase activity in the plasma and body tissue during the larval and adult stages of the house cricket. Insect Biochem 17:751–758

    Article  CAS  Google Scholar 

  • Yan B, Wang L, Li Y, Liu N, Wang Q (2007) Effects of cadmium on hepatopancreatic antioxidant enzyme activity in freshwater crab Sinopotamon yangtsekiense. Acta Zool Sin 53(6):1121–1128

    CAS  Google Scholar 

  • Yousef HA, Afify A, Hasan HM, Meguid AA (2010) DNA damage in hemocytes of Schistocerca gregaria (Orthoptera: Acrididae) exposed to contaminated food with cadmium and lead. Nat Sci 2:292–297

    CAS  Google Scholar 

  • Yousef HA, Abdelfattah EA, Augustyniak M (2017) Evaluation of oxidative stress biomarkers in Aiolopus thalassinus (Orthoptera: Acrididae) collected from areas polluted by the fertilizer industry. Ecotoxicology 26(3):340–350. https://doi.org/10.1007/s10646-017-1767-6

    Article  CAS  Google Scholar 

  • Zhang Y, Sun G, Yang M, Wu H, Zhang J, Song S, Guo Y (2011) Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicol Environ Saf 74(5):1355–1362

    Article  CAS  Google Scholar 

  • Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K (2014) Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol 27(10):1643–1651

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Cairo University, Faculty of Science, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham A. Yousef.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, H.A., Abdelfattah, E.A. & Augustyniak, M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). Environ Sci Pollut Res 26, 3823–3833 (2019). https://doi.org/10.1007/s11356-018-3756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3756-6

Keywords

Navigation