Skip to main content
Log in

Stage-, sex- and tissue-related changes in H2O2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study is part of a large project carried out at the Cairo University, Egypt, and focused on assessing physiological and biochemical changes in Aiolopus thalassinus under the influence of environmental pollution with heavy metals (Pb, Cd, Cu, and Zn). The study aimed to investigate parameters related to maintaining redox balance, with particular emphasis on stage-, sex- and tissue-dependent differences in H2O2 and glutathione (GSH) levels and activity of selected enzymes involved in GSH metabolism. A noticeable increase in the concentration of H2O2 was found, especially in the gut of 5th instar nymphs and females from the highly polluted site. An increase in GSH concentration was significant, especially in the gut of adult A. thalassinus from the high polluted site. However, recycling of reduced form of glutathione in the gut by glutathione reductase (GR) was relevant only for females from the high polluted site. Nymphs and females generally showed higher glutathione S-transferase (GST) activity, especially in the gut. These stage- and sex-related differences can result from different growth dynamic and various reproductive functions of nymphs and both sexes. The digestive track is in direct contact with xenobiotics consumed with food. Nymphs are characterized by vigorous growth, they feed intensively, and their development processes are associated with substantial oxygen consumption. Also, maintaining the antioxidant system at a high level can be more important for females than males due to egg production over a long period. It appears that de novo GSH synthesis is a favorable and cost-effective adaptation mechanism for A. thalassinus living in the high polluted site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdelfattah EA, Augustyniak M, Yousef HA (2017) Biomonitoring of genotoxicity of industrial fertilizer metals in Aiolopus thalassinus (Orthoptera: Acdidae) using alkaline comet assay. Chemosphere. 182:762–770

    Article  CAS  Google Scholar 

  • Ahmad S (1995) Oxidative stress from environmental metals. Arch Insect Biochem Physiol 29(2):135–157

    Article  CAS  Google Scholar 

  • Allen RG, Farmer KJ, Newton RK, Sohal RS (1984) Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp Biochem Physiol (C) Comp Pharmacol 78(2):283–288

    Article  CAS  Google Scholar 

  • Amado LL, Robaldo RB, Geracitano L, Monserrat JM, Bianchini A (2006) Biomarkers of exposure and effect in the Brazilian flounder Paralichthys orbignyanus (Teleostei: Paralichthyidae) from the Patos Lagoon estuary (Southern Brazil). Mar Pollut Bull 52:207–213

    Article  CAS  Google Scholar 

  • Amorim MJB, Pereira C, Soares AMVM, Scott-fordsmand JJ (2017) Does long term low impact stress cause population extinction? Environ Pollut 220:1014–1023. https://doi.org/10.1016/j.envpol.2016.11.044

    Article  CAS  Google Scholar 

  • Augustyniak M, Babczynska A, Augustyniak M (2009) Does the grasshopper Chorthippus brunneus adapt to metal polluted habitats? A study of glutathione-dependent enzymes in grasshopper nymphs. Insect Sci 16:33–42. https://doi.org/10.1111/j.1744-7917.2009.00251.x

    Article  CAS  Google Scholar 

  • Augustyniak M, Migula P (2000) Body burden with metals and detoxifying abilities of the grasshopper—Chorthippus brunneus (Thunberg) from industrially polluted areas. In: Merkert B, Friese K (eds) Trace Elements—their distribution and effects in the environment. Elsevier Sci, Amsterdam, p 423–454

  • Augustyniak M, Płachetka-Bożek A, Kafel A, Babczyńska A, Tarnawska M, Janiak A, Loba A, Dziewięcka M, Karpeta-Kaczmarek J, Zawisza-Raszka A (2016) Phenotypic plasticity, epigenetic or genetic modifications in relation to the duration of Cd-exposure within a microevolution time range in the beet armyworm. PLoS ONE 11:e0167371. https://doi.org/10.1371/journal.pone.0167371

    Article  CAS  Google Scholar 

  • Augustyniak M, Przybylowicz W, Mesjasz-Przybylowicz J, Migula P, Tarnawska M, Glowacka E, Babczynska A (2008) Nuclear microprobe studies of grasshopper feeding on nickel hyperaccumulating plants. X-Ray Spectrom 37:142–145

    Article  CAS  Google Scholar 

  • Augustyniak M, Tarnawska M, Dziewięcka M, Kafel M, Rost-Roszkowska M, Babczyńska A (2020) DNA damage in Spodoptera exigua after multigenerational cadmium exposure - A trade-off between genome stability and adaptation. Sci Total Environ. 745:141048. https://doi.org/10.1016/j.scitotenv.2020.141048

  • Azam I, Afsheen S, Zia, A, Javed M, Saeed R, Sarwar M K, Munir B (2015) Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Res Int 1–11. https://doi.org/10.1155/2015/942751

  • Barrett J (1995) Helminth glutathione transferases. Helminthologia 32:125–128

    CAS  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld J (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in arabidopsis auxin signaling. The Plant Cell. 22:376–391. https://doi.org/10.1105/tpc.109.071225

    Article  CAS  Google Scholar 

  • Bicho RC, Santo FCF, Scott-fordsmand JJ, Amorim MJB (2017) Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl2: exposure in the soil invertebrate Enchytraeus crypticus. Sci Rep 7:8457. https://doi.org/10.1038/s41598-017-08911-0

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase assay. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S (2020) Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. Pest Biochem Physiol 168:104632

  • Chary NS, Kamala CT, Raj DS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524

    Article  CAS  Google Scholar 

  • Chen PS, Wang TC, Chang GG (1995) Chemical modification of glutathione S-transferase from C6/36, an Aedes albopictus cell line. Insect Biochem Molec Biol 25(5):613–619

    Article  CAS  Google Scholar 

  • Cohen E (1986) Glutathione S-transferase activity and its induction in several strains of Tribolium castaneum. Entomol Exp Appl 41:39–44

    Article  CAS  Google Scholar 

  • Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Rad Biol Med 95:27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

    Article  CAS  Google Scholar 

  • Díaz-Cruz M S, Mendieta J, Tauler R, Esteban M (1997) Cadmium-binding properties of glutathione: A chemometrical analysis of voltammetric data. J Inorgan Biochem 66(1):29–36. https://doi.org/10.1016/S0162-0134(96)00156-0

    Article  Google Scholar 

  • Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH (2020) Ag+ Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 92(13):8923–8932. https://doi.org/10.1021/acs.analchem.0c00829?ref=pdf

    Article  CAS  Google Scholar 

  • Dos-Anjos NA, Schulze T, Brack W, Val AL, Schirmer K, Scholz S (2011) Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical freshwater ecosystems. Aquat Toxicol 103(1):46–52

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1(6):529–539. https://doi.org/10.2174/1568026013394831

    Article  CAS  Google Scholar 

  • Foyer C H, Noctor R G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environ 28:1056–1071. https://doi.org/10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  • Gough D R, Cotter T G (2011) Hydrogen peroxide: a Jekyll and Hyde signalling molecule Cell Death & Disease 2(10):e213. https://doi.org/10.1038/cddis.2011.96

    Article  CAS  Google Scholar 

  • Habig W H, Pabs M J, Jakoby W B (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation J Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: Role of free radicals. In: Storey KB, editor. Functional Metabolism: Regulation and Adaptation. Hoboken, New Jersey, USA: John Wiley & Sons, pp. 319-368. ISBN: 0-471-410909-X

  • Íşcan M, Coban T, Eke B C, Iscan M (1995) Differential responses of hepatic monooxygenases and glutathione S-transferases of mice to a combination of cadmium and nickel. Comp. Biochem Physiol C, Pharmacol Toxicol. Endocrinol 111:61–68

    Article  Google Scholar 

  • Isman MB, Feng R, Johnson DL (1996) Detoxicative enzyme activities in five species of field-collected melanopline grasshoppers (Orthoptera: Acrididae). Can Entomol 128:353–354

    Article  Google Scholar 

  • Ivanina AV, Cherkasov AS, Sokolova IM (2008) Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin. J Exp Biol 211:577–586

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175. https://doi.org/10.3390/ijms13033145

    Article  CAS  Google Scholar 

  • Junglee S, Urban L, Sallanon H, Lopez-Lauri F (2014) Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am J Anal Chem 5:730–736

    Article  CAS  Google Scholar 

  • Kafel A, Zawisza-Raszka A, Szulińska E (2012) Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on antioxidant response in haemolymph and developmental parameters. Environ Pollut 162:8–14. https://doi.org/10.1016/j.envpol.2011.09.034

    Article  CAS  Google Scholar 

  • Khalid M, Hassani S, Abdollahi M (2020) Metal-induced oxidative stress: an evidence-based update of advantages and disadvantages. Curr Opinion Toxicol 20–21:55–68. https://doi.org/10.1016/j.cotox.2020.05.006

    Article  Google Scholar 

  • Kojic D, Spasojevic I, Mojovic M, Blagojevic D, Worland MR, Grubor-Lajsic G (2009) Potential role of hydrogen peroxide and melanin in the cold hardiness of Ostrinia nubilalis (Lepidoptera: Pyralidae). Eur J Entomol. 106:451–454

    Article  Google Scholar 

  • Konno Y, Shishdo T (1992) Distribution of glutathione S-transferase activity in insect tissues. Appl Entomol Zool 27(3):391–397

    Article  CAS  Google Scholar 

  • Kotze AC, Rose HA (1987) Glutathione S-transferase in the australian sheep blowfly, Lucilia cuprina (Wiedemann). Pestic Biochem Physiol 29:77–86

    Article  CAS  Google Scholar 

  • Kotze AC, Rose HA (1989) Purification and properties of glutathione S-transferases from the larvae of the australian sheep blowfly, Lucilia cuprina (Wiedemann). Insect Biochem 19(7):703–713

    Article  CAS  Google Scholar 

  • Kriby ML, Ottea JA (1995) Multiple mechanisms for enhancement of glutathione S-transferase activities in Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Biochem Mol Biol 25(3):347–353

    Article  Google Scholar 

  • Lalah JO, Chien C, Motoyama N, Dauterman WC (1995) Glutathione S-transferases: alpha-naphthyl acetate activity and possible role in insecticide resistance. J Econ Entomol 88(4):768–770

    Article  CAS  Google Scholar 

  • Łaszczyca P, Augustyniak M, Babczyńska A (2004) Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland)‏. Environ Int 30(7):901–910. https://doi.org/10.1016/j.envint.2004.02.006

    Article  CAS  Google Scholar 

  • Lee K (1991) Glutathione S-transferase activities in phytophagous insects: induction and inhibition by plant phototoxins and phenols. Insect Biochem 21(4):353–361

    Article  CAS  Google Scholar 

  • Lee K, Berenbaum MR (1992) Ecological aspects of antioxidant enzymes and glutathione-S-transferases in three Papilio Species. Biochem System Ecol 20(3):197–207

    Article  CAS  Google Scholar 

  • Li X, Wang M, Jiang R, Zhing L, Chen W (2020) Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J Environ Sci 94:137–146. https://doi.org/10.1016/j.jes.2020.03.055

    Article  Google Scholar 

  • Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cells 7(10):156. https://doi.org/10.3390/cells7100156

    Article  CAS  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  Google Scholar 

  • Migula P, Glowacka E (1996) Heavy metals as stressing factors in the red wood ants (Formica polyctena) from industrially polluted forests. Fresenius’ J Analyt Chem 354:653–659

    Article  CAS  Google Scholar 

  • Migula P, Laszczyca P, Augustyniak M, Wilczek G, Rozpedek K, Kafel A, Woloszyn M (2004) Antioxidative defense enzymes in beetles from a metal pollution gradient. Biologia (Bratisl.) 59:645–654

    CAS  Google Scholar 

  • Mnkandla SM, Siwela AH, Basopo N (2019) Effects of chronic exposures of selected heavy metals on the glutathione S-transferase activity of freshwater snails Lymnaea natalensis in Zimbabwe. Afri J Aquat Sci 44:233–236

    Article  CAS  Google Scholar 

  • Mockett RJ, Orr WC, Rahmandar JJ, Benes JJ, Radyuk SN, Klichko VI, Sohal RS (1999) Overexpression of Mn-Containing superoxide dismutase in transgenic Drosophila melanogaster. Arch Biochem Biophys 371(2):260–269

    Article  CAS  Google Scholar 

  • Nikolić T, Kojić D, Orčić S, Vukašinović EL, Blagojević DP, Purać J (2019) Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead. Environ Sci Pollut Res 26:6890–6897. https://doi.org/10.1007/s11356-018-3950-6

    Article  CAS  Google Scholar 

  • Nriagu J (1996) A history of global metal pollution. Science 272:223–224

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Okamoto T, Taguchi M, Osaki T, Fukumoto S, Fujita T (2014) Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation. J Bone Miner Metab 32(4):393–399

    Article  CAS  Google Scholar 

  • Pardini RS (1995) Toxicity of oxygen from naturally occurring redox-active pro-oxidants. Arch Insect Biochm Physiol 29:101–118

    Article  CAS  Google Scholar 

  • Perić-Mataruga V, Ilijin L, Mrdaković M, Todorović D, Prokić M, Matić D, Vlahović M (2019) Parameters of oxidative stress, cholinesterase activity, Cd bioaccumulation in the brain and midgut of Lymantria dispar (Lepidoptera: Lymantriidae) caterpillars from unpolluted and polluted forests. Chemosphere 218:416–424. https://doi.org/10.1016/j.chemosphere.2018.11.112

    Article  CAS  Google Scholar 

  • Pérez-Zúñiga C, Leiva-Presa A, Austin RN, Capdevila M, Palacios O (2019) Pb (ii) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains/. Metallomics 11(2):349–361. https://doi.org/10.1039/C8MT00294K

    Article  Google Scholar 

  • Rani M, Devika O S, Choudhary S, Patra A, Jha A K, Prasad S K, Singh R K (2019) An overview of heavy metal stress in soil ecosystem and technological intervention for its remediation. IJCS 7(3):1485–1493.

  • Ranson H, Hemingway J (2005) Glutathione transferases In: Comprehe Molec Insect Sci Pharmacol (Gilbert LI, Iatrou K., Gill S S, Eds) pp. 383-389. Elsevier, Oxford, UK. https://doi.org/10.1016/B0-44-451924-6/00074-0

  • Sanz A, López-Rodríguez MJ, García-Mesa S, Trenzado C, Ferrer RM, Tierno de Figueroa JM (2017) Are antioxidant capacity and oxidative damage related to biological and autecological characteristics in aquatic insects? J Limnol 76(1):170–181. https://doi.org/10.4081/jlimnol.2016.1581

    Article  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  CAS  Google Scholar 

  • Schäfer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Res Inst ESR Facil 30:1191–1212

    Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Cell 48:158–167

    CAS  Google Scholar 

  • Seyyedi MA, Farahnak A, Jalali M, Rokni MB (2005) Study on Glutathione -S-Transferase (GST) inhibition assay by triclabendazole. I: protoscoleces (Hydatid Cyst; Echinococcus granulosus) and sheep liver tissue. Irani J Public Health 34(1):38–46

    CAS  Google Scholar 

  • Smirle MJ, Winston ML (1988) Detoxifying enzyme activity in worker honeybees: an adaptation for foraging in contaminated ecosystems. Can J Zool 66:1938–1942

    Article  CAS  Google Scholar 

  • Stenersen J, Kobro M, Bjerke M, Arend U (1987) Glutathione transferases in aquatic and terrestrial animals from nine phyla. Comp Biochem Physiol 86C:73–82

    CAS  Google Scholar 

  • Strange RC, Jones PW, Fryer AA (2000) Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett 112–113:357–363. https://doi.org/10.1016/S0027-5107(01)00206-8

    Article  Google Scholar 

  • Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S- transferase family of enzymes. Mutat Res 482(1–2):21–26

    Article  CAS  Google Scholar 

  • Sureda A, Box A, Enseñat M, Alou E, Tauler P, Deudero S, Pons A (2006) Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. Comp Biochem Physiol (C) 144(2):191–196

    Google Scholar 

  • Tarnawska M, Kafel A, Augustyniak M, Rost-roszkowska M, Babczyńska A (2019) Microevolution or wide tolerance? Level of stress proteins in the beet armyworm Spodoptera eqigua hübner (Lepidoptera: Noctuidae) exposed to cadmium for over 150 generations. Ecotoxicol Environ Saf 178:1–8. https://doi.org/10.1016/j.ecoenv.2019.04.017

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208. https://doi.org/10.2174/0929867053764635

    Article  CAS  Google Scholar 

  • Wadleigh RW, Yu SJ (1987) Glutathione transferase activity of fall armyworm larvae toward a, b-unsaturated carbonyl allelochemicals and its induction by allelochemicals. Insect Biochem 17(5):759–764

    Article  CAS  Google Scholar 

  • Wilczek G, Babczyńska A, Augustyniak M, Migula P (2004) Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ Pollut 132(3):453–461. https://doi.org/10.1016/j.envpol.2004.05.011

    Article  CAS  Google Scholar 

  • Wilczek G, Migula P (1996) Metal body burdens and detoxifying enzymes in spiders from industrially polluted areas. Fresenius’ J Analytic Chem. 354:643–647

    Article  CAS  Google Scholar 

  • Win MS, Tian Z, Zhao H, Xiao K, Peng J, Shang Y, Wu M, Xiu G, Lu S, Yonemochi S, Wang Q (2018) Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): a review. J Environ Sci 71:13–31. https://doi.org/10.1016/j.jes.2017.12.004

    Article  Google Scholar 

  • Yousef HA, Abdelfattah EA, Augustyniak M (2017) Evaluation of oxidative stress biomarkers in Aiolopus thalassinus (Orthoptera: Acrididae) collected from areas polluted by the fertilizer industry. Ecotoxicology 26(3):340–350. https://doi.org/10.1007/s10646-017-1767-6

    Article  CAS  Google Scholar 

  • Yousef HA, Abdelfattah EA, Augustyniak M (2019) Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). Environ Sci Pollut Res 26:3823–3833

    Article  CAS  Google Scholar 

  • Yu SJ (1982) Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Physiol. 18(1):101–106. https://doi.org/10.1016/0048-3575(82)90092-X

    Article  CAS  Google Scholar 

  • Yu SJ, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: roles of insecticide synergists, larval age, and species. Arch Insect Biochem Physiol 24:21–32

    Article  CAS  Google Scholar 

  • Zaman K, MacGill RS, Johnson JE, Ahmad S, Pardini RS (1995) An insect model for assessing oxidative stress related to arsenic toxicity. Arch Insect Biochem Physiol 29:199–209

    Article  CAS  Google Scholar 

  • Zhang W, Liu W, Zhang J, Zhao H, Zhang Y, Quan X, Jin Y (2012) Characterization of acute toxicity, genotoxicity and oxidative stress posed by textile effluent on zebrafish. J Environ Sci 24(11):2019–2027. https://doi.org/10.1016/S1001-0742(11)61030-9

    Article  CAS  Google Scholar 

  • Zhang H, Huo S, Yeager KM, Li C, Xi B, Zhang J, He Z, Ma C (2019) Apparent relationships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system. J Environ Sci 83:174–182. https://doi.org/10.1016/j.jes.2019.03.024

    Article  Google Scholar 

  • Zhang L, Yan W, Xie Z, Cai G, Mi W, Xo W (2020) Bioaccumulation and changes of trace metals over the last two decades in marine organisms from Guangdong coastal regions, South China. J Environ Sci 98:103–108. https://doi.org/10.1016/j.jes.2020.05.007

    Article  Google Scholar 

  • Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K (2014) Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol 27(10):1643–1651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was done in labs of Cairo University, Faculty of Science, Entomology Department, Egypt.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EAF. The first draft of the manuscript was written by HY and reviewed by MA. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham A. Yousef.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

Consent to participate and consent to publish were obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfattah, E.A., Augustyniak, M. & Yousef, H.A. Stage-, sex- and tissue-related changes in H2O2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas. Ecotoxicology 30, 478–491 (2021). https://doi.org/10.1007/s10646-021-02354-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02354-0

Keywords

Navigation